

Mr. Anthony Karwiel New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7014

Subject: Binghamton Court Street Former MGP Site Susquehanna River Sediments Pre-Design Investigation Letter Report

Dear Mr. Karwiel:

This letter presents the results of the Pre-Design Investigation (PDI) completed in connection with the Binghamton Court Street former manufactured gas plant (MGP) site (the "site") located in Binghamton, New York. The PDI was conducted by ARCADIS, on behalf of New York State Electric & Gas (NYSEG), between October 20 and November 6, 2014. The fieldwork was performed in accordance with the following correspondence:

- Pre-Design Work Plan (PDI Work Plan) dated June 6, 2014
- New York State Department of Environmental Conservation's (NYSDEC) approval letter to NYSEG dated July 28, 2014

The PDI objectives and background are provided below, followed by a discussion of the completed fieldwork and results of the PDI.

Objectives and Background

Prior to conducting the PDI, ARCADIS conducted a reconnaissance and sediment assessment at the site between March 11 and May 21, 2013 to determine whether regions of affected sediments documented in the 2002 Remedial Investigation (RI) still existed. The need for this assessment was precipitated by the occurrence of two major flood events that occurred after the RI. The assessment involved probing and sampling sediments along the same stretch of the Susquehanna River that was investigated during the RI, as well as investigating sediment depositional areas near the first downstream dam located approximately 3,300 feet downstream from the site. The results of the assessment were detailed in the Susquehanna River Sediment Assessment Report submitted to NYSDEC on August 19, 2013 (Attachment A).

ARCADIS of New York, Inc. 6723 Towpath Road PO Box 66 Syracuse New York 13214-0066 Tel 315.446.9120 Fax 315.446.8053 www.arcadis-us.com

ENVIRONMENT

Date: May 14, 2015

Contact: David A. Cornell, P.G.

Phone: 315.671.9379

Email: David.Cornell@arcadis-us.com

Our ref: B0013082.0012.00001

Mr. Anthony Karwiel May 14, 2015

The findings of the 2013 assessment indicated that the distribution of visual impacts observed in surficial sediments adjacent to and downstream from the site varied from the distribution of visual impacts documented in the RI.

As set forth in the June 2014 PDI Work Plan two areas in the Susquehanna River adjacent to the site, Area 1 and Area 2, were identified for remedial consideration and further evaluation in the PDI. The specific objectives of the PDI were to:

- evaluate the distribution of visual impacts (i.e., sheens, non-aqueous phase liquid [NAPL]) in deeper sediments in comparison to the impacts observed during previous investigations;
- assess the concentration and extent of MGP-related polycyclic aromatic hydrocarbons (PAHs) in sediments; and
- obtain the necessary geotechnical data to support a remedial design.

This letter report describes the PDI activities, provides the PDI sampling results from Area 1 and Area 2 adjacent to the site, and provides the revised horizontal and vertical extents of Area 1 and Area 2.

Pre-Design Sediment Drilling and Sampling

A total of 24 sediment borings were advanced during the PDI as shown on **Figure 1**. Sixteen (16) planned borings (PDI-SED-A to PDI-SED-P) and eight (8) contingency borings (PDI-SED-B-1, PDI-SED-E-1, PDI-SED-I-1, PDI-SED-L-1 through PDI-SED-L-3, PDI-SED-N-1, and PDI-SED-P-1) were installed. Boring logs are provided in **Attachment B**. The contingency borings were installed to further refine the extent where visual field observations were noted. Two planned borings (PDI-SED-H and PDI-SED-A) in Area 1 and two planned borings in Area 2 (PDI-SED-A and PDI-SED-M) were advanced to greater depths (20 to 30 feet below sediment surface [bss]) in order to gather additional subsurface geotechnical information (**Figure 1**).

Prior to initiating the sediment drilling activities, a utility clearance was performed.

Due to the heavily armored bottom of the Susquehanna River, borings were advanced by a barge-mounted Acker Ace drill rig using drive and wash methods. A rotary bit was also used to advance borings through obstructions. In order to minimize impacts to surface water during drilling, an oil absorbent boom was placed around the barge and a temporary casing was set into sediments prior to the advancement of all borings. Sediment samples were obtained continuously using a 3-inch diameter by 2-foot long split spoon sampler driven by a 300-pound hammer. With the exception of the geotechnical locations, most borings were advanced to depths between 4 and10 feet bss. Water depths, blow-counts, sample recoveries,

Mr. Anthony Karwiel May 14, 2015

and/or any observed impacts produced by the drilling were also noted on the boring logs during the PDI.

Equipment used during the drilling program was decontaminated prior to, in between, and after all intrusive activities using an Alconox wash or by steam cleaning. Decontamination water, sediment cuttings and all investigation-derived waste (IDW) were containerized in 55-gallon drums for subsequent off-site disposal by NYSEG. Sediment borings were backfilled using a bentonite grout mixture or naturally by sediment collapse. The location and sediment surface elevations of each boring were surveyed by ARCADIS using a global positioning system (GPS) relative to North American Datum of 1983 (NAD 83) and North American Vertical Datum of 1988 (NAVD 88), respectively.

Recovered sediment samples were visually characterized for color, composition, and presence/absence of potential MGP-related impacts (i.e., NAPL, blebs, coating, sheens, staining, or odors) and headspace screened for volatile organic compounds using a photoionization detector (PID). A total of 73 sediment samples were submitted for laboratory analysis from the 24 borings advanced during the PDI. Sediment sampling intervals were selected for laboratory analysis based on predetermined depths described in the PDI Work Plan. When sediment samples exhibited field observations of potential impacts at the pre-determined termination depth, additional deeper intervals were sampled until at least 2 feet of visually clean sediment was encountered. Sediment samples were submitted to Accutest Laboratories for analysis of National Oceanic and Atmospheric Administration (NOAA) 34 PAHs using United States Environmental Protection Agency (USEPA) SW-846 Method 8270 and total organic carbon (TOC) using the Lloyd Kahn method.

ARCADIS validated the laboratory analytical data and prepared a data usability summary report (DUSR) for each individual sample delivery group (SDG) using the most-recent versions of the USEPA's Functional Guidelines (USEPA, 1999; 2002) and USEPA Region II standard operating procedures (SOPs) for data validation. The DUSRs include an assessment of data accuracy, precision, and completeness; significant quality assurance problems, solutions, corrections, and potential consequences; and analytical data validation reports. The results of the data validation have been incorporated into the analytical data presented in **Table 1**.

Pre-Design Investigation Results

The following discussion of the PDI results is divided into subsections based on the areas that were investigated, specifically Area 1 and Area 2 as defined in the PDI Work Plan. **Figure 1** provides the PDI boring locations, and **Table 1** provides the analytical data from the PDI.

<u>Area 1</u>

The sediments of Area 1 are primarily described as fine to coarse sands and fine to coarse gravels (PDI-SED-H through PDI-SED-P-1). There were also some notable silt lenses within the upper 2 to 3 feet at PDI-SED-I and PDI-SED-J. Field observations of potential impacts were noted at 8 of the 12 boring locations within or near Area 1. Field observations of potential impacts included NAPL blebs to trace blebs, light NAPL coating, staining, and sheens. In addition, trace sheens and MGP-like odors were observed. No saturated NAPL conditions were encountered. Total priority pollutant PAH (PrPAH) concentrations measured from sediment in this area ranged from 0.14 milligrams per kilogram (mg/kg) (PDI-SED-H) to 850 mg/kg (PDI-SED-J). A more comprehensive list of field observations and associated PrPAH concentrations for Area 1 are provided below.

Location	Field Observations (ft bss)	PrPAH mg/kg (feet bss)
PDI-SED-H	Faint MGP-like odor (24.0 to 27.4)	3.02 (0.0 to 0.5) 0.70 (0.5 to 1) 0.81 (1 to 2) 0.77 (2 to 3) 0.14 (3 to 4)
PDI-SED-I	Faint MGP-like odor (0 to 0.4) and (2.9 to 3.1)	51.4 (0 to 0.5) 381 (0.5 to 1) 1.5 (1 to 2) 1.4/ 0.75 (2 to 3) 0.48 (3 to 4)
PDI-SED-I-1	No obvious impacts	0.17 (0 to 2)
PDI-SED-J	Light NAPL coating, sheen, NAPL blebs, MGP-like odor (0 to 0.6) Faint MGP-like odor (2.6 to 6.9)	753/ 850 (1 to 2) 4.71 (2 to 3) 4.61 (3 to 4)
PDI-SED-K	Trace NAPL blebs, trace sheen, MGP-like odor (0.5 to 0.8) Trace NAPL blebs , sheen, MGP- like odor (2.0 to 2.9)	694 (1 to 2) 10.1 (2 to 3) 7.65 (3 to 4)
PDI-SED-L	Black staining, trace sheen (0.4 to 0.7) Trace sheen, faint MGP-like odor (2 to 2.7)	18.3 (0 to 0.5) 453 (0.5 to 1) 526 (1 to 2) 101 (2 to 3) 10.1 (3 to 4)
PDI-SED-L-1	Trace sheen (2 to 2.8) Trace sheen, trace NAPL blebs (4.3 to 4.8)	1.48 (5 to 6)
PDI-SED-L-2	Black staining, light NAPL coating, trace sheen, MGP-like odor (2.7 to 2.9) Faint MGP-like odor (4.2-4.5)	1.89 (0 to 2) 3.15 (2 to 3) 689 (3 to 4) 391 (4 to 6)

Location	Field Observations (ft bss)	PrPAH mg/kg (feet bss)
PDI-SED-L-3	No obvious impacts	1.49 (2 to 4)
PDI-SED-M	No obvious impacts	1.22 (2 to 3) 1.24 (3 to 4) 0.31 (4 to 5)
PDI-SED-N	NAPL blebs, MGP-like odor, trace sheen (0.2 to 2.7) Trace NAPL blebs, faint MGP-like odor (4 to 4.6)	226 (0 to 0.5) 72.0 (0.5 to 1) 79.5 (1 to 2) 4.62 (2 to 3) 0.54 (3 to 4) 0.71 (4 to 5) 0.27 (6 to 8)
PDI-SED-N-1	No obvious impacts	0.61 (0 to 2)
PDI-SED-O	No obvious impacts	1.24 (2 to 3) 0.23 (3 to 4) 0.52 (4 to 5)
PDI-SED-P	Black staining, faint MGP-like odor (0.4 to 0.7) Trace sheen (2 to 3)	0.89 (0 to 0.5) 1.52 (0.5 to 1) 4.66 (1 to 2) 5.83/ 4.03 (2 to 3) 14.2 (3 to 4) 12.5 (4 to 5)
PDI-SED-P-1	No obvious impacts	3.65 (0 to 2) 3.77 (2 to 4)

<u>Area 2</u>

The sediments of Area 2 are primarily described as fine to coarse sands and fine to coarse gravels (PDI-SED-A through PDI-SED-G). Borings PDI-SED-A, B and G contained MGP-like odors. PrPAH concentrations measured from sediment in this area ranged from 0.01 mg/kg (PDI-SED-A) to 2.38 mg/kg (PDI-SED-G). A more comprehensive list of field observations and associated Total PrPAH concentrations for Area 2 are detailed in the table below.

Location	Field Observations (ft bss)	Total PrPAH mg/kg (feet bss)
PDI-SED-A	Faint MGP-like odor (20 to 22)	0.02 (0 to 0.5) 0.01 (1 to 2) 0.01 (2-3) 0.01 (3-4)
PDI-SED-B	Faint MGP-like odor (2.0 to 2.4)	0.23 (1 to 2) 0.10 (2 to 3) 0.05 (3 to 4)
PDI-SED-B-1	No obvious impacts	NA
PDI-SED-C	No obvious impacts	0.14 (0 to 0.5) 0.15 (1 to 2) 0.27 (2 to 3) 0.18 (3 to 4)

Location	Field Observations (ft bss)	Total PrPAH mg/kg (feet bss)
PDI-SED-D	Trace sheen, faint MGP-like odor (0 to 3.1) Faint MGP-like odor (4.0 to 4.4)	0.18 (1 to 2) 0.31 (2 to 3) 0.38 (3 to 4)
PDI-SED-E	No obvious impacts	1.34 (0 to 4)
PDI-SED-E-1	No obvious impacts	NA
PDI-SED-F	Light to moderate NAPL coating, sheen, faint to strong MGP-like odor (28.4 to 29.5)	0.21 (0 to 0.5) 0.16 (1 to 2) 0.31 (2 to 3) 0.27 (3 to 4)
PDI-SED-G	No obvious impacts	2.36 (0 to 0.5) 0.44 (1 to 2) 2.38 (2 to 3) 1.09 (3 to 4)

In addition to the shallow impacts (<5 feet bss), three borings installed during the 2014 PDI also encountered deeper impacts in the sands and gravel well below the river bed. As detailed in the tables above and on the attached borings logs, locations PDI-SED-A (Area-2) and PDI-SED-H (Area-1) encountered faint MGP-like odors from 20 to 22 feet bss and from 24 to 27.4 feet bss, respectively. Additionally, an interval of NAPL coated sand and gravel was observed from 28.4 to 29.5 feet bss at boring location PDI-SED-F (Area-2), which corresponds to the interval immediately above the till. Due to the depth of these impacts, they are not contiguous to the shallow sediment impacts that resulted from historic storm water discharges. The interval with NAPL coating lies over 25 feet below the base of the river, and the faint MGP like odors were observed approximately 15 feet below the base of the river. Therefore, these deep impacts will not be included in the areas for remedial consideration.

Areas 1 and 2 Remedial Extents

The proposed areas for remedial consideration set forth in the PDI Work Plan were revised based on the PDI results, the 2013 assessment results, as well as previous investigation results. Specifically the following were included in the remedial extent:, field observations of NAPL blebs, coating, staining, and sheen (except for trace or slight sheen); TPAH16 concentrations greater than 4 mg/kg (i.e. Class B and C sediments per Table 5 of the NYSDEC Screening and Assessment of Contaminated Sediment (2014); and the presence of sheens during the 2013 assessment. **Figure 2** depicts the 2014 boring locations, the 2013 sediment probing and sample locations, historical sampling locations, and the newly defined areas for remedial consideration based on this PDI. The rationale for the remedial extents of Areas 1 and 2 is provided below.

Mr. Anthony Karwiel May 14, 2015

<u>Area 1</u>

The horizontal extent of Area 1 is based on the field observations of no NAPL blebs, coating, staining, and sheens, and PrPAH concentrations at or less than 4 mg/kg at the following locations:

SS-4, SS-3-8, SR-104, SD-04, H, I-1, SS-3-7, SS-3-4, L-3, SS-3-9, M, N-1, SS-3-10, O, P, P-1, BG-02, SR-101, and SS-3-14

The vertical extent of Area 1 is based on the field observations of no NAPL blebs, coating, staining, and sheens and PrPAH concentrations at or less than 4 mg/kg below field observations of potential impacts and PrPAH concentrations greater than 4 mg/kg at the following locations:

Location	Vertical Extent
I	1 foot
J	2 feet
SS-3-3	2 feet
К	3 feet
SS-3-1	3 feet
L	3 feet
L-1	5 feet
N	2 feet

Area 1 is depicted on **Figure 2**, and **Table 2** provides a detailed tabulation of the horizontal and vertical delineation of Area 1.

As shown on **Figure 2** and detailed in **Table 3**, two boring location (SS-3-12 and PDI-SED-P) where sheens were observed within the sediment were not included in Area 1 because the data from SS-3-12 collect in 1997 is superseded by 2014 boring location PDI-SED-O (no impacts and TPAH less than 4 mg/kg) leaving only boring location PDI-SED-P (trace sheen and TPAHs lower than 4 mg/kg in the upper 1 foot and 4.66 mg/kg in the 1 to 2 foot interval) surrounded by borings with no visible impacts and TPAHs lower than 4 mg/kg (PDI-SED-N1, SS-3-10, PDI-SED-L-3, PDI-SED-O, BG-02, SR-101, SS-3-14 and PDI-SED-P1).

Area 2

The horizontal extent of Area 2 is based on the field observations of no NAPL blebs, coating, staining, and sheens and PrPAH concentrations at or less than 4 mg/kg at the following locations:

• SS-12-5, A, B, B-1, SS-12-6, SR-103, SS-12-4, D, C, SS-12-2, E, E-1, SS-12-7, SS-9, G, and F

Mr. Anthony Karwiel May 14, 2015

The vertical extent of Area 2 is assumed to be 1 foot based on the field observations and PrPAH concentrations from the previous investigations as none of the 2014 encountered potential impacts or contained PrPAH concentrations greater than 4 mg/kg. In two borings, SS-12-3 and SS-12-1, sheens were observed to 2 feet; however the PrPAH concentrations from the 1 to 2 foot interval were 2 and 2.3 mg/kg, respectively.

Area 2 is depicted on **Figure 2**, and **Table 3** provides a detailed tabulation of the horizontal and vertical delineation of Area 2.

Summary

Based on the results of the most recent investigations, NYSEG believes that sediments impacted with site related constituents have been adequately delineated. Therefore, with NYSDEC concurrence, NYSEG plans to move forward with a remedial design based on the vertical and horizontal removal of shallow sediments as described in this report and as depicted by Areas 1 and 2 detailed on **Figure 2**.

Please feel free to contact Tracy Blazicek (NYSEG) or me if you have any questions or comments.

Sincerely,

ARCADIS of New York, Inc.

David A. Cornell, P.G. Senior Geologist

Attachments

Copies: Tracy Blazicek, CHMM, NYSEG Nancy Gensky, P.G., ARCADIS Keith White, C.P.G., ARCADIS

Tables

Location ID:	NYSDEC	NYSDEC		PDI-SED-A	PDI-SED-A	PDI-SED-A	PDI-SED-A	PDI-SED-B	PDI-SED-B	PDI-SED-B	PDI-SED-C	PDI-SED-C
Sample Depth(Feet):	Sed	Sed		0 - 0.5	1 - 2	2 - 3	3 - 4	1 - 2	2 - 3	3 - 4	0 - 0.5	1 - 2
Date Collected:	Class A	Class C	Units	10/31/14	10/31/14	10/31/14	10/31/14	10/23/14	10/23/14	10/23/14	10/23/14	10/23/14
CPAHs												
Acenaphthene			ug/kg	5.88	4.40 U	4.10 U	3.14 J	19.0 U	9.20	12.6	61.3	63.3 [86.4]
Acenaphthylene			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	19.0 U	2.70 J	2.00 J	2.80 J	2.30 J [2.70 J]
Anthracene			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	19.0 U	2.40 J	4.10 U	8.20	17.3 [18.5]
Benzo(a)anthracene			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	13.2 J	4.10 J	4.10 U	4.20 J	4.40 U [3.90 U]
Benzo(a)pyrene			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	16.8 J	5.70	4.10 U	5.40	4.40 U [3.90 U]
Benzo(b)fluoranthene			ug/kg	4.60 UJ	4.40 UJ	4.10 UJ	3.80 U	20.1	6.60	4.10 U	5.90	4.40 U [3.90 U]
Benzo(e)pyrene			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	15.9 J	5.70	4.10 U	5.70	4.40 U [3.90 U]
Benzo(ghi)perylene			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	12.0 J	4.40	4.10 U	4.90	4.40 U [3.90 U]
Benzo(k)fluoranthene			ug/kg	4.60 UJ	4.40 UJ	4.10 UJ	3.80 U	15.8 J	4.90	4.10 U	5.40	4.40 U [3.90 U]
C1-Benzo(a)anthracenes/Chrysenes			ug/kg	4.60 U	2.32 J	4.10 U	3.80 U	19.0 U	3.10 J	4.10 U	2.40 J	4.40 U [3.90 U]
C1-Fluoranthenes/Pyrenes			ug/kg	3.44 J	2.77 J	2.35 J	3.80 U	16.9 J	6.00	2.20 J	5.20	4.40 U [3.90 U]
C1-Fluorenes			ug/kg	5.78	3.46 J	4.10 U	3.80 U	19.0 U	4.00 J	6.00	6.70	10.5 [11.2]
C1-Naphthalenes			ug/kg	4.60 U	4.40 U	4.10 U	2.66 J	19.0 U	3.40 J	14.7	9.10	32.2 [38.8]
C1-Phenanthrenes/Anthracenes			ug/kg	2.56 J	3.93 J	2.90 J	3.80 U	22.5	6.00	3.90 J	3.80 J	4.40 [5.50]
C2-Benzo(a)anthracenes/Chrysenes			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	19.0 U	4.30 U	4.10 U	4.40 U	4.40 U [3.90 U]
C2-Fluorenes			ug/kg	4.31 J	3.97 J	4.10 U	3.80 U	19.0 U	2.80 J	4.10 U	3.20 J	3.60 J [3.90 U]
C2-Naphthalenes			ug/kg	4.05 J	4.13 J	2.83 J	3.63 J	13.0 J	5.40	12.2	17.6	41.3 [48.1]
C2-Phenanthrenes/Anthracenes			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	19.0 U	3.40 J	2.90 J	5.50	2.40 J [2.80 J]
C3-Benzo(a)anthracenes/Chrysenes			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	19.0 U	4.30 U	4.10 U	4.40 U	4.40 U [3.90 U]
C3-Fluorenes			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	19.0 U	4.30 U	4.10 U	4.40 U	4.40 U [3.90 U]
C3-Naphthalenes			ug/kg	2.96 J	2.59 J	2.68 J	2.60 J	19.0 UBJ	4.30 UB	5.60 UB	11.1 UB	20.5 [21.6]
C3-Phenanthrenes/Anthracenes			ug/kg	4.60 U	2.80 J	4.10 U	3.80 U	9.90 J	2.80 J	4.10 U	2.70 J	4.40 U [3.90 U]
C4-Benzo(a)anthracenes/Chrysenes			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	19.0 U	4.30 U	4.10 U	4.40 U	4.40 U [3.90 U]
C4-Naphthalenes			ug/kg	3.70 J	3.08 J	3.50 J	2.25 J	19.0 U	4.30 U	4.10 U	5.00	6.80 [7.20]
C4-Phenanthrenes/Anthracenes			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	19.0 U	4.30 U	4.10 U	4.40 U	4.40 U [3.90 U]
Chrysene			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	14.4 J	6.10	4.10 U	4.40	4.40 U [3.90 U]
Dibenzo(a,h)anthracene			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	19.0 U	4.30 U	4.10 U	4.40 U	4.40 U [3.90 U]
Fluoranthene			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	40.9 J	14.4	4.10 U	11.5	4.40 U [3.90 U]
Fluorene			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	19.0 U	4.30 U	4.10 U	2.40 J	4.80 [5.60]
Indeno(1,2,3-cd)pyrene			ug/kg	4.60 U	4.40 U	4.10 U	3.80 U	11.2 J	3.80 J	4.10 U	3.50 J	4.40 U [3.90 U]
Naphthalene			ug/kg	4.60 U	4.90	4.10 U	4.30	19.3 J	11.7	24.3	4.50	8.80 [11.3]
Perylene			ug/kg	4.60 U	109	4.10 U	3.80 U	16.7 J	6.40	4.10 U	3.70 J	4.40 U [3.90 U]
Phenanthrene			ug/kg	4.60 U	4.02 J	3.47 J	3.80 U	20.0 J	7.20	3.30 J	8.00	49.7 [41.5]
Pyrene			ug/kg	8.99	4.40 U	3.34 J	2.00 J	43.4 J	20.9	5.00	10.6	4.40 U [3.90 U]
Total PrPAHs	4,000	35,000	ug/kg	14.9	8.92 J	6.81 J	9.44 J	227 J	104 J	47.2 J	143 J	146 J [166 J]
Total Organic Carbon												
Total Organic Carbon			mg/kg	653	6,330	671	717	3,260	3,850	516	1,430	608 [767]
Percent Moisture			5 5		- /	-		-,	- /		,	
Percent Solids			%	79.2	77.4	87.1	89.9	92.5	90.3	91.4	86.1	88.8 [89.5]

Location ID: Sample Depth(Feet):	NYSDEC Sed	NYSDEC Sed		PDI-SED-C 2 - 3	PDI-SED-C 3 - 4	PDI-SED-D 1 - 2	PDI-SED-D 2 - 3	PDI-SED-D 3 - 4	PDI-SED-E 0 - 4	PDI-SED-F 0 - 0.5	PDI-SED-F 1 - 2	PDI-SED-F 2 - 3	PDI-SED-F 3 - 4
Date Collected:	Class A	Class C	Units	10/23/14	10/23/14	10/23/14	10/23/14	10/23/14	10/23/14	10/29/14	10/29/14	10/29/14	10/29/14
CPAHs	Clubb //	01000 0											
Acenaphthene			ug/kg	98.1	53.1	38.9	78.5	103	208	65.7	66.0	130	134
Acenaphthylene			ua/ka	18.0 U	4.20 U	4.40 U	13.0 U	3.40 J	55.0	7.19	3.91 J	7.87	9.45
Anthracene			ug/kg	29.1	17.4	18.6	36.3	41.9	65.7	13.8	10.6	27.8	15.8
Benzo(a)anthracene			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	56.1	5.08	4.00 U	4.30 U	4.20 U
Benzo(a)pyrene			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	45.4 J	5.62	4.00 U	4.30 U	4.20 U
Benzo(b)fluoranthene			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	30.0 J	5.04 J	4.00 UJ	4.30 UJ	4.20 UJ
Benzo(e)pyrene			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	39.4	4.18 J	4.00 U	4.30 U	4.20 U
Benzo(ghi)perylene			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	24.2	3.47 J	4.00 U	4.30 U	4.20 U
Benzo(k)fluoranthene			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	32.6	4.69 J	4.00 UJ	4.30 UJ	4.20 UJ
C1-Benzo(a)anthracenes/Chrysenes			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	36.6	2.70 J	4.00 U	4.30 U	4.20 U
C1-Fluoranthenes/Pyrenes			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	121	6.64	4.00 U	2.16 J	4.20 U
C1-Fluorenes			ug/kg	17.8 J	9.80	6.90	12.9 J	15.2	39.1	17.7	17.6	38.7	27.7
C1-Naphthalenes			ug/kg	57.8	39.1	42.1	53.6	81.8	91.5	6.01	9.86	18.0	30.5
C1-Phenanthrenes/Anthracenes			ug/kg	14.0 J	5.80	4.90	14.6	18.4	109	11.9	7.57	18.8	10.6
C2-Benzo(a)anthracenes/Chrysenes			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	21.0 U	4.20 U	4.00 U	4.30 U	4.20 U
C2-Fluorenes			ug/kg	18.0 U	4.20 U	4.40 U	8.30 J	3.70 J	52.9	11.4	8.89	16.4	10.8
C2-Naphthalenes			ug/kg	75.6	46.5	43.6	66.9	87.2	131	18.6	23.2	44.9	51.9
C2-Phenanthrenes/Anthracenes			ug/kg	18.0 U	4.20 U	2.30 J	6.60 J	4.20 U	69.4	4.33	2.45 J	3.70 J	4.20 U
C3-Benzo(a)anthracenes/Chrysenes			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	21.0 U	4.20 U	4.00 U	4.30 U	4.20 U
C3-Fluorenes			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	62.3	4.20 U	4.00 U	4.30 U	4.20 U
C3-Naphthalenes			ug/kg	32.7	18.1	14.3	24.5	26.1	82.1	19.8	16.6	42.7	29.0
C3-Phenanthrenes/Anthracenes			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	47.0	2.77 J	4.00 U	4.30 U	4.20 U
C4-Benzo(a)anthracenes/Chrysenes			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	21.0 U	4.20 U	4.00 U	4.30 U	4.20 U
C4-Naphthalenes			ug/kg	18.0 U	6.80	6.50	14.5	8.80	52.8	11.8	8.84	16.7	10.1
C4-Phenanthrenes/Anthracenes			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	21.0 U	4.20 U	4.00 U	4.30 U	4.20 U
Chrysene			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	72.3	6.49	4.00 U	4.30 U	4.20 U
Dibenzo(a,h)anthracene			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	21.0 U	4.20 U	4.00 U	4.30 U	4.20 U
Fluoranthene			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	150	30.9	15.5	30.3	14.5
Fluorene			ug/kg	10.3 J	11.4	22.9	36.7	49.6	49.1	7.80	14.0	25.7	24.9
Indeno(1,2,3-cd)pyrene			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	20.0 J	3.07 J	4.00 U	4.30 U	4.20 U
Naphthalene			ug/kg	13.4 J	13.0	10.9	14.0	16.7	144	6.84	18.4	16.9	22.6
Perylene			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	15.5 J	4.20 U	4.00 U	4.30 U	4.20 U
Phenanthrene			ug/kg	119	80.2	84.0	145	166	174	17.7	18.7	41.2	34.0
Pyrene			ug/kg	18.0 U	4.20 U	4.40 U	13.0 U	4.20 U	213	30.7	15.0	28.2	12.8
Total PrPAHs	4,000	35,000	ug/kg	270 J	175	175	311	381 J	1,340 J	214 J	162 J	308	268
Total Organic Carbon													·i
Total Organic Carbon			mg/kg	530	625	692	477	534	13,400	2,430	2,460	2,900	771
Percent Moisture			53						-,		,	,	·
Percent Solids			%	86.2	90.8	89.2	87.4	84.4	90.1	92	91.8	90.3	90.5

Location ID: Sample Depth(Feet):	NYSDEC Sed	NYSDEC Sed		PDI-SED-G 0 - 0.5	PDI-SED-G 1 - 2	PDI-SED-G 2 - 3	PDI-SED-G 3 - 4	PDI-SED-H 0 - 0.5	PDI-SED-H 0.5 - 1	PDI-SED-H 1 - 2	PDI-SED-H 2 - 3	PDI-SED-H 3 - 4	PDI-SED-I 0 - 0.5
Date Collected:		Class C	Units	10/23/14	10/23/14	10/23/14	3 - 4 10/23/14	10/21/14	10/21/14	10/21/14	2 - 3 10/21/14	3 - 4 10/21/14	10/23/14
CPAHs	Class A	01055 0	onito	10/20/14	10/20/14	10/20/14	10/20/14	10/2 1/14	10/21/14	10/21/14	10/21/14	10/21/14	10/20/14
Acenaphthene			ug/kg	46.8	17.2	336	35.3	23.5 J	5.10 U	4.50 J	5.90	4.90 U	4,770
Acenaphthylene			ug/kg	124	22.1	83.6	34.5	56.7 J	19.0	17.8	14.5	5.10	937
Anthracene			ug/kg	97.7	14.3	83.3	37.2	120	17.6	23.4	20.9	5.00	2,410 D
Benzo(a)anthracene			ug/kg	143	24.4	124	69.5	187 J	55.6	64.0	65.0	9.80	1,900
Benzo(a)pyrene			ug/kg	165	34.5	167	87.8	192 J	82.7	71.8	71.2	13.9	2,210
Benzo(b)fluoranthene			ug/kg	154	22.4	94.7	64.3	173 J	57.0	57.6	57.4	10.8	849 J
Benzo(e)pyrene			ug/kg	168	26.8	120	68.1	156 J	76.2	54.2	53.7	10.8	1,120 J
Benzo(ghi)perylene			ug/kg	129	22.8	96.9	59.0	117 J	55.9	39.3	47.6	8.60	1,010
Benzo(k)fluoranthene			ug/kg	149	23.5	106	66.7	167 J	53.7	59.8	54.7	11.0	1,150
C1-Benzo(a)anthracenes/Chrysenes			ug/kg	102	12.6	57.8	37.2	82.2 J	41.8	36.6	31.7	7.00	280
C1-Fluoranthenes/Pyrenes			ug/kg	184	35.2	163	78.8	189 J	75.8	73.8	64.6	12.3 UB	2,740
C1-Fluorenes			ug/kg	22.8	5.50	18.7	10.0	25.8	9.20 UB	9.60	7.00 UB	4.90 UB	704
C1-Naphthalenes			ug/kg	71.4	15.1	222	34.5	54.9	9.10	8.60	7.60	2.70 J	892
C1-Phenanthrenes/Anthracenes			ug/kg	160	20.7	93.9	64.0	178 J	37.5	47.0	37.9	8.20 UB	1,740
C2-Benzo(a)anthracenes/Chrysenes			ug/kg	53.1	7.00	26.6	16.6	33.7	18.5	15.3	15.2	4.40 J	31.2
C2-Fluorenes			ug/kg	25.1	7.90	21.2	12.2	28.1 J	18.5	18.5 UB	13.8 UB	4.90 UB	203
C2-Naphthalenes			ug/kg	62.1	14.2	98.9	30.1	46.5	14.1 UB	19.1 UB	12.7 UB	4.90 UB	1,080
C2-Phenanthrenes/Anthracenes			ug/kg	103	14.7	65.4	42.9	72.0	31.5	39.9	24.3	6.30 UB	167
C3-Benzo(a)anthracenes/Chrysenes			ug/kg	35.4	4.50 U	27.7	13.7	21.5	5.10 U	13.0	4.70 U	4.90 U	4.20 U
C3-Fluorenes			ug/kg	47.1	4.50 U	29.1	4.70 U	56.2 J	16.7	25.4	4.70 U	4.90 U	64.8
C3-Naphthalenes			ug/kg	45.7	11.2 UB	34.7	22.6	34.2	15.6 UB	22.5	12.8 UB	5.70 UB	174
C3-Phenanthrenes/Anthracenes			ug/kg	65.7	10.4	51.6	28.0	37.9	30.5	31.9	21.6	5.30 UB	22.5
C4-Benzo(a)anthracenes/Chrysenes			ug/kg	24.9	4.50 U	98.8	74.4	4.60 U	5.10 U	4.90 U	4.70 U	4.90 U	4.20 U
C4-Naphthalenes			ug/kg	33.1	11.1	21.5	15.9	19.7	15.0 UB	21.0	12.5 UB	5.40 UB	25.9
C4-Phenanthrenes/Anthracenes			ug/kg	20.5	4.90	23.3	10.5	17.4	38.7	22.8	10.9	4.90 U	4.20 U
Chrysene			ug/kg	158	25.4	121	67.4	216 J	78.1	77.4	75.3	12.5	1,640
Dibenzo(a,h)anthracene			ug/kg	29.4	4.70	18.9	14.9	32.5 J	12.2	10.0	14.2	3.00 J	159
Fluoranthene			ug/kg	319	46.2	231	131	527	59.8	127	123	16.0	7,110 D
Fluorene			ug/kg	29.7	6.20	27.3	13.8	54.4 J	7.20	9.60	6.20	4.90 U	2,610
Indeno(1,2,3-cd)pyrene			ug/kg	102	18.4	76.7	53.3	112 J	40.4	35.0	39.3	7.70	761
Naphthalene			ug/kg	173	61.3	308	116	177	29.7	34.2	14.7	4.50 J	384
Perylene			ug/kg	118	36.9	190	75.5	152	476	377	392	62.2	434
Phenanthrene			ug/kg	208	26.8	161	84.7	436 J	33.8	51.4	44.9	9.20 UB	12,700 D
Pyrene			ug/kg	336	67.6	348	151	431 J	95.5	122	114	17.5	10,800 D
Total PrPAHs	4,000	35,000	ug/kg	2,360	438	2,380	1,090	3,020	698	805 J	769	135 J	51,400
Total Organic Carbon	,	,	-00	,		,	,	- /					
Total Organic Carbon			mg/kg	8,770	3,070	6.040	3,880	11,900	14,700	13,700	8,860	1,250	6,440
Percent Moisture	I			0,110	0,010	0,010	0,000	11,000	11,700	10,700	0,000	1,200	0,110
Percent Solids			%	84.7	80.4	83.2	83.2	76	69.6	75.5	77	80.3	84.6
	1	1	70	01.1	00.1	00.2	00.2	10	00.0	10.0		00.0	01.0

Location ID: Sample Depth(Feet):	NYSDEC Sed	NYSDEC Sed		PDI-SED-I 0.5 - 1	PDI-SED-I 1 - 2	PDI-SED-I 2 - 3	PDI-SED-I 3 - 4	PDI-SED-I-1 0 - 2	PDI-SED-J 1 - 2	PDI-SED-J 2 - 3	PDI-SED-J 3 - 4
Date Collected:	Class A	Class C	Units	10/23/14	10/23/14	10/23/14	10/23/14	11/05/14	10/24/14	10/24/14	10/24/14
CPAHs											
Acenaphthene			ug/kg	34,500 D	134	215 J [87.5 J]	202	42.5	136,000 D [143,000 D]	885	3,020
Acenaphthylene			ug/kg	10,000 D	56.9	41.9 J [12.3 J]	3.40 J	11.0 U	7,250 [8,700]	88.5	29.5
Anthracene			ug/kg	18,000 D	66.3	47.4 J [27.2 J]	4.10 J	11.0 U	33,000 D [52,800 D]	184	45.9
Benzo(a)anthracene			ug/kg	8,750	67.3	61.2 J [20.6 J]	3.80 J	11.0 U	16,700 [19,800]	126	23.1
Benzo(a)pyrene			ug/kg	24,300 D	84.5	77.8 J [29.3 J]	5.40	6.24 J	19,800 J [23,800 J]	157	28.7
Benzo(b)fluoranthene			ug/kg	4,730 J	37.3	33.1 J [12.8 J]	3.60 J	11.0 U	7,730 J [9,620 J]	63.2	12.9
Benzo(e)pyrene			ug/kg	12,100 DJ	47.3	42.1 J [16.1 J]	2.70 J	11.0 U	9,710 [11,800]	79.1	15.6
Benzo(ghi)perylene			ug/kg	5,760	44.1	37.8 J [15.1 J]	4.60	11.0	7,420 [8,960]	69.1	13.5
Benzo(k)fluoranthene			ug/kg	5,570	45.7	40.1 J [15.0 J]	3.60 J	11.0 U	9,580 [11,400]	75.2	13.8
C1-Benzo(a)anthracenes/Chrysenes			ug/kg	1,560	13.4	12.1 [3.50 J]	4.40 U	11.0 U	3,100 [3,760]	22.1	5.50
C1-Fluoranthenes/Pyrenes			ug/kg	14,500	90.5	74.6 J [25.8 J]	5.00 UB	6.03 J	27,200 [33,200]	181	37.5
C1-Fluorenes			ug/kg	3,360	23.7	16.5 [10.4]	4.40 UB	11.0 U	8,870 [9,670]	54.0	29.5
C1-Naphthalenes			ug/kg	2,790	47.0	69.1 J [38.6 J]	126	14.9 B	36,300 [36,800]	213	1,020
C1-Phenanthrenes/Anthracenes			ug/kg	7,860	50.2	36.5 J [19.4 J]	5.20	7.86 JB	17,900 [20,600]	115	27.7
C2-Benzo(a)anthracenes/Chrysenes			ug/kg	157	4.50 U	4.60 U [4.40 U]	4.40 U	11.0 U	477 [605]	4.50 U	4.20 U
C2-Fluorenes			ug/kg	811	7.20 UB	5.10 UB [4.40 U]	4.40 UB	11.0 U	1,890 [2,130]	11.6	5.40
C2-Naphthalenes			ug/kg	4,220	55.3	56.7 J [31.0 J]	8.20 UB	14.9 B	13,600 [14,600]	96.3	364
C2-Phenanthrenes/Anthracenes			ug/kg	905	8.30 UB	7.50 UB [4.30 J]	2.40 J	11.0 U	2,180 [2,540]	16.4	6.60
C3-Benzo(a)anthracenes/Chrysenes			ug/kg	4.40 U	4.50 U	4.60 U [4.40 U]	4.40 U	11.0 U	122 [46.0 U]	4.50 U	4.20 U
C3-Fluorenes			ug/kg	194	4.50 U	4.60 U [4.40 U]	4.40 U	11.0 U	362 [526]	4.50 U	4.20 U
C3-Naphthalenes			ug/kg	613	16.4 UB	9.00 UB [4.90 UB]	4.40 UB	10.7 JB	1,450 [1,620]	10.0 UB	22.7
C3-Phenanthrenes/Anthracenes			ug/kg	80.3	4.50 U	4.60 UB [4.40 U]	2.20 J	11.0 U	321 [399]	3.80 J	2.50 J
C4-Benzo(a)anthracenes/Chrysenes			ug/kg	4.40 U	4.50 U	4.60 U [4.40 U]	4.40 U	11.0 U	46.0 U [46.0 U]	4.50 U	4.20 U
C4-Naphthalenes			ug/kg	82.2	6.10 UB	4.60 U [4.00 J]	4.50 UB	7.00 JB	233 [259]	5.80	6.80
C4-Phenanthrenes/Anthracenes			ug/kg	4.40 U	4.50 U	4.60 U [4.40 U]	4.40 U	11.0 U	139 [135]	3.20 J	4.20 U
Chrysene			ug/kg	7,240	55.9	43.6 J [21.1 J]	5.80	7.11 J	14,100 [19,000]	119	17.5
Dibenzo(a,h)anthracene			ug/kg	887	6.30	5.00 [2.60 J]	11.0	11.1	1,320 [1,590]	9.70	4.20 U
Fluoranthene			ug/kg	53,500 D	167	128 J [72.6 J]	7.90	11.0 U	46,700 [52,000]	388	75.3
Fluorene			ug/kg	20,300 D	69.6	99.3 J [45.4 J]	8.10	11.0	42,300 [44,800]	357	466
Indeno(1,2,3-cd)pyrene			ug/kg	4,550	33.8	27.5 J [12.1 J]	7.00	11.0 U	6,410 [7,660]	58.8	10.2
Naphthalene			ug/kg	241	64.7	67.2 [79.1]	181	52.9	173,000 D [201,000 D]	493	345
Perylene			ug/kg	1,910	19.9	13.5 [8.70]	124	109	2,980 [3,330]	24.3	84.6
Phenanthrene			ug/kg	102,000 D	322	274 [185]	14.2	12.4	162,000 D [169,000 D]	1,050	395
Pyrene			ug/kg	81,000 D	247	201 J [109 J]	11.4	12.3	69,400 [77,100]	591	114
Total PrPAHs	4,000	35,000	ug/kg	381,000	1,500	1,400 [747 J]	477 J	167 J	753,000 [850,000]	4,710	4,610
Total Organic Carbon											
Total Organic Carbon			mg/kg	5,950	801	1,220 [1,020]	6,600	NA	21,700 [13,800]	930	2,130
Percent Moisture			53	- ,			- /		,		
Percent Solids			%	89	82.6	82.1 [83.4]	79.8	88.6	79.8 [86.1]	82.7	85.4

Location ID: Sample Depth(Feet): Date Collected:	Sed	NYSDEC Sed Class C	Units	PDI-SED-K 1 - 2 10/28/14	PDI-SED-K 2 - 3 10/28/14	PDI-SED-K 3 - 4 10/28/14	PDI-SED-L 0 - 0.5 10/24/14	PDI-SED-L 0.5 - 1 10/24/14	PDI-SED-L 1 - 2 10/24/14	PDI-SED-L 2 - 3 10/24/14	PDI-SED-L 3 - 4 10/24/14	PDI-SED-L-1 5 - 6 10/28/14	PDI-SED-L-2 0 - 2 11/05/14
CPAHs	Old35 A	01033 0	onito	10/20/14	10/20/14	10/20/14	10/24/14	10/2-11-1	10/24/14	10/2-1/1-1	10/24/14	10/20/14	11/00/14
Acenaphthene			ua/ka	86,700	1.030	853	507	54.800	50,500	12.100	1.960	115	124
Acenaphthylene			ug/kg	10,400	175	124	301 J	12,400	18,100	3,360	356	45.6	189
Anthracene			ug/kg	62,800 D	673	683	690 J	38,200	47,600 D	8,160	713	41.2	77.6
Benzo(a)anthracene			ug/kg	26,900	544	375	1,300	11.500	16.600	3,280	330	4.40 U	12.0 U
Benzo(a)pyrene			ua/ka	30.000	552	373	1.480 J	8,470 J	13,400 J	2,540 J	269 J	4.40 U	12.0 U
Benzo(b)fluoranthene			ug/kg	12,300	267	164	1,260 J	4,730 J	6,670 J	1,270 J	123 J	4.40 U	12.0 U
Benzo(e)pyrene			ug/kg	14.600	294	186	1.040 J	4,690	6.640	1,280 J	138 J	4.40 U	12.0 U
Benzo(ghi)perylene			ua/ka	9.770	199	118	766	2.850	3.940	754	88.0	4.40 U	12.0 U
Benzo(k)fluoranthene			ua/ka	15.500	349	230	1.150 J	5,280	7.370	1,450 J	165 J	4.40 U	12.0 U
C1-Benzo(a)anthracenes/Chrysenes			ug/kg	7,000	191	126	494 J	8,100	12,200	2,380	225	4.40 U	12.0 U
C1-Fluoranthenes/Pyrenes			ug/kg	47,100	829	571	1,470	30,200	44,200	8,520	792	122	7.83 J
C1-Fluorenes			ug/kg	12,500	171	133	315	43,200	39,300	6,920	702	53.3	24.2
C1-Naphthalenes			ug/kg	33,900	194	182	333	4,070	10,700	2,400	260	9.64	89.1
C1-Phenanthrenes/Anthracenes			ug/kg	32,900	639	492	956	78,900	95,500	19,500	1,640	68.2	52.8
C2-Benzo(a)anthracenes/Chrysenes			ug/kg	1,670	47.7	29.5	186 J	4,050	4,290	783	78.9	4.40 U	12.0 U
C2-Fluorenes			ug/kg	3,800	79.0	56.9	343	18,700	21,900	4,060	376	25.8	6.66 JB
C2-Naphthalenes			ug/kg	18,700	208	175	505	65,100	55,900	11,900	1,150	32.7	69.2
C2-Phenanthrenes/Anthracenes			ug/kg	6,390	191	141	608	22,200	30,000	5,700	498	29.8	12.0 U
C3-Benzo(a)anthracenes/Chrysenes			ug/kg	463	15.4	7.50	102 J	2,860	1,220	100 U	19.4	4.40 U	12.0 U
C3-Fluorenes			ug/kg	874	97.8	49.4	361	4,230	6,080	1,410	84.6	4.40 U	12.0 U
C3-Naphthalenes			ug/kg	4,380	112	93.3	434	60,300	46,000	9,110	825	33.2	23.4 B
C3-Phenanthrenes/Anthracenes			ug/kg	1,540	60.2	37.6	368	6,660	8,050	1,460	136	4.06 J	12.0 U
C4-Benzo(a)anthracenes/Chrysenes			ug/kg	551	14.8	8.00	73.4 J	2,090	464	100 U	4.70 U	4.40 U	12.0 U
C4-Naphthalenes			ug/kg	1,090	43.5	29.8	337 J	13,700	15,400	2,940	249	10.5	8.68 JB
C4-Phenanthrenes/Anthracenes			ug/kg	585	15.3	10.8	110	1,590	1,290	245	20.9	4.40 U	12.0 U
Chrysene			ug/kg	28,200	544	500	1,460	10,900	14,400	2,970	303	4.40 U	12.0 U
Dibenzo(a,h)anthracene			ug/kg	2,270	51.1	31.1	248	1,040	1,390	274	27.6	4.40 U	12.0 U
Fluoranthene			ug/kg	58,800	1,290	887	2,670	41,000	33,500	7,370	693	422	210
Fluorene			ug/kg	44,100	444	343	500	63,600	52,400	11,400	1,050	117	58.7
Indeno(1,2,3-cd)pyrene			ug/kg	8,940 J	180	109	771	2,810	3,900	741	79.1	4.40 U	12.0 U
Naphthalene			ug/kg	42,200	281	239	631 J	1,470	3,100	681	119	20.5	400
Perylene			ug/kg	4,190	96.1	69.3	403	1,550	2,200	444 J	48.9	4.40 U	12.0 U
Phenanthrene			ug/kg	168,000 D	1,740	1,350	1,830 J	146,000	210,000 D	35,000	2,870	59.8	561
Pyrene			ug/kg	87,500	1,830	1,270	2,710	48,100	43,100	9,950	948	658	266
Total PrPAHs	4,000	35,000	ug/kg	694,000	10,100	7,650	18,300	453,000	526,000	101,000	10,100	1,480	1,890
Total Organic Carbon					•	•	•				•	•	· · · · · · · · · · · · · · · · · · ·
Total Organic Carbon			mg/kg	16,600	4,110	1,350	24,600	40,700	37,900	9,070	3,140	1,340	NA
Percent Moisture			53	-,		,	,	-,	- /	-,	-, -	1	•
Percent Solids			%	76.6	84.8	86.3	83.8	80.8	84.1	85.6	81.9	84	89

Location ID:				-	PDI-SED-L-2	-		PDI-SED-M	PDI-SED-M	PDI-SED-M	PDI-SED-N	PDI-SED-N	PDI-SED-N
Sample Depth(Feet): Date Collected:	Sed Class A	Sed Class C	Units	2 - 3 11/05/14	3 - 4 11/05/14	4 - 6 11/05/14	2 - 4 11/05/14	2 - 3 10/29/14	3 - 4 10/29/14	4 - 5 10/29/14	0 - 0.5 10/24/14	0.5 - 1 10/24/14	1 - 2 10/24/14
CPAHs	CIASS A	Class C	Units	11/03/14	11/03/14	11/03/14	11/03/14	10/23/14	10/23/14	10/23/14	10/24/14	10/24/14	10/24/14
Acenaphthene			ug/kg	149	32,300	14,700	133	38.9	48.1	38.3	19.000	7,330	7.980
Acenaphthylene			ua/ka	349	75,900	34.800	122	46.2 J	28.5	8.62 J	5.790	2,450	2.750
Anthracene			ug/kg	137	37,700	17,800	63.3	55.0 J	97.4	15.5 J	16,400	5,510	6,320
Benzo(a)anthracene			ug/kg	2.93 J	20,500	9,670	22.0	72.4 J	72.7	15.4 J	10,300	2,850	3,050
Benzo(a)pyrene			ug/kg	4.50 U	24,400	11,400	22.3	132 J	106	26.8	14,400 J	2,840 J	2,770 J
Benzo(b)fluoranthene			ug/kg	4.50 U	8,480	3,870	8.04 J	69.7 J	66.1	13.4 J	6,250 J	1,420 J	1,250 J
Benzo(e)pyrene			ug/kg	4.50 U	12,300	5,940	16.6	91.3 J	74.2	16.9 J	7.740 J	1,440 J	1,420 J
Benzo(ghi)perylene			ug/kg	4.50 U	11,400	5,540	13.0	77.8	61.9	15.7 J	6,550	947	918
Benzo(k)fluoranthene			ug/kg	4.50 U	12,700	6,190	17.2	74.8 J	66.9	14.5 J	7,070 J	1,600 J	1,650 J
C1-Benzo(a)anthracenes/Chrysenes			ug/kg	4.50 U	6,110	2,360	8.77 J	45.8 J	26.2	17.0 U	3,090	1,840	1,950
C1-Fluoranthenes/Pyrenes			ug/kg	25.6	24,500	10,900	34.5	110 J	96.2	20.8	15,500	6,360	6,930
C1-Fluorenes			ug/kg	43.0	9,650	4,120	29.3	18.9 J	15.8	9.29 J	5,660	4,250	4,500
C1-Naphthalenes			ug/kg	169	71,700	33,600	97.0	9.52	13.1	17.0 U	4,430	2,250	2,630
C1-Phenanthrenes/Anthracenes			ug/kg	109	29,400	12,700	60.1	68.3 J	51.8	15.1 J	16,200	12,500	14,000
C2-Benzo(a)anthracenes/Chrysenes			ug/kg	4.50 U	1,720	660	12.0 U	40.1 J	15.4	17.0 U	742	622	653
C2-Fluorenes			ug/kg	9.37 B	2,560	1,110	9.91 JB	26.2 J	20.5	17.0 U	2,950	2,610	3,010
C2-Naphthalenes			ug/kg	141	39,100	15,400	76.5	17.3 J	15.9	12.9 J	8,410	6,170	6,580
C2-Phenanthrenes/Anthracenes			ug/kg	9.17	6,080	2,510	13.3	42.6 J	23.1	17.0 U	4,270	3,850	4,260
C3-Benzo(a)anthracenes/Chrysenes			ug/kg	4.50 U	410 U	430 U	12.0 U	43.4 J	17.6	17.0 U	224	161	213
C3-Fluorenes			ug/kg	4.50 U	705	373 J	12.0 U	31.1 J	19.7	17.0 U	928	848	834
C3-Naphthalenes			ug/kg	32.0 B	7,390	3,080	33.4 B	24.6 J	14.9	10.7 J	5,090	5,110	5,260
C3-Phenanthrenes/Anthracenes			ug/kg	4.50 U	1,270	489	12.0 U	37.6 J	17.1	9.05 J	1,140	965	1,110
C4-Benzo(a)anthracenes/Chrysenes			ug/kg	4.50 U	410 U	430 U	12.0 U	26.9 J	14.6	17.0 U	110 U	82.0 U	366
C4-Naphthalenes			ug/kg	6.74 B	1,540	636	10.3 JB	21.2 J	12.9	14.5 J	1,890	2,000	2,010
C4-Phenanthrenes/Anthracenes			ug/kg	4.50 U	326 J	430 U	12.0 U	24.9 J	8.69	17.0 U	245	167	206
Chrysene			ug/kg	4.87	20,700	12,600	33.9	92.0 J	87.0	18.5	11,000	2,710	2,850
Dibenzo(a,h)anthracene			ug/kg	4.50 U	1,630	717	12.0 U	12.9	10.8	17.0 U	1,070	284	250
Fluoranthene			ug/kg	303	59,100	29,300	100	145	158	31.4	25,600	6,370	6,830
Fluorene			ug/kg	107	42,700	17,900	72.3	15.6	20.3	17.0 U	10,700	5,710	6,480
Indeno(1,2,3-cd)pyrene			ug/kg	4.50 U	8,160	3,810	12.0 U	60.3 J	49.8	11.8 J	5,110	880	845
Naphthalene			ug/kg	704	86,200	104,000	417	37.1	56.4	28.6	2,920	2,250	1,890
Perylene			ug/kg	4.50 U	3,680	1,750	9.56 J	68.7	175	65.8	2,130 J	510 J	477 J
Phenanthrene			ug/kg	988	157,000	72,900	295	84.2 J	89.5	22.0	46,300	20,700	24,700
Pyrene			ug/kg	404	90,000	45,500	174	209	221	45.4	37,800	8,140	8,930
Total PrPAHs	4,000	35,000	ug/kg	3,150 J	689,000	391,000	1,490 J	1,220 J	1,240	306 J	226,000	72,000	79,500
Total Organic Carbon		•		· · · ·				· · ·	•				
Total Organic Carbon			mg/kg	NA	NA	NA	NA	2,230	3,650	1,610	14,400	5,610	9,710
Percent Moisture						1	· I	,	- /	,	,		
Percent Solids			%	89.1	83.4	91.2	89.1	85.2	87.4	83.7	88.3	90.8	88

Location ID:				PDI-SED-N	PDI-SED-N	PDI-SED-N	PDI-SED-N	PDI-SED-N-I	PDI-SED-O	PDI-SED-O	PDI-SED-O	PDI-SED-P	PDI-SED-P
Sample Depth(Feet):	Sed	Sed		2 - 3	3 - 4	4 - 5	6 - 8	0 - 2	2 - 3	3 - 4	4 - 5	0 - 0.5	0.5 - 1
Date Collected: CPAHs	Class A	Class C	Units	10/24/14	10/24/14	10/27/14	10/27/14	10/27/14	10/27/14	10/27/14	10/27/14	10/28/14	10/28/14
Acenaphthene			ug/kg	889	30.2	176 J	26.8	18.1	456	11.7	23.5	7.82	25.3
Acenaphthylene			ug/kg	123	27.7	16.7 J	11.9	20.5	16.1	8.30 UB	8.90 UB	17.6	106
Anthracene			ug/kg	313	35.9	42.5 J	19.4	18.3	36.3	15.6	31.3	16.6	71.6
Benzo(a)anthracene			ug/kg ug/kg	183	33.7	42.5 J 22.1 J	19.4	36.6	43.3	12.9	22.9	61.9	102
Benzo(a)pyrene			ug/kg ug/kg	213 J	36.8 J	16.9 J	12.3	35.0	43.3	12.9	30.7	83.2	102
Benzo(b)fluoranthene			ug/kg ug/kg	213 J 99.5 J	30.8 J 17.9 J	9.50 J	5.90	39.4	23.4	7.90	14.3	77.3	127
			0 0	99.5 J 117 J	17.9 J 19.1 J	9.50 J 9.60 J	6.00	40.0	23.4	9.70	14.3	68.2	104
Benzo(e)pyrene			ug/kg	-									
Benzo(ghi)perylene			ug/kg	90.7	13.8 J	5.70	3.60 J	26.2	21.0	7.80	15.0	50.8	80.3
Benzo(k)fluoranthene			ug/kg	123 J	21.1 J	12.1 J	6.90	40.0	27.9	9.30	16.9	72.6	96.5
C1-Benzo(a)anthracenes/Chrysenes			ug/kg	83.0	22.9	14.9 J	9.40	25.1	18.9	5.80	4.70	26.6	89.6
C1-Fluoranthenes/Pyrenes			ug/kg	328	70.3	58.1 J	29.7	57.2	68.9	20.3	29.0	58.5	176
C1-Fluorenes			ug/kg	138	18.7	27.8 J	20.0	9.27	18.2	4.70	5.80	6.34	31.3
C1-Naphthalenes			ug/kg	241	14.1 J	59.5 J	16.2	20.2	16.0	2.50 J	5.80	15.2	24.8
C1-Phenanthrenes/Anthracenes			ug/kg	492	64.0	72.8 J	51.2	28.9	35.5	11.5 UB	15.7	30.5	97.5
C2-Benzo(a)anthracenes/Chrysenes			ug/kg	25.6	16.0 U	4.80 J	3.70 J	15.4	5.80	4.30 U	4.40 U	13.2	69.5
C2-Fluorenes			ug/kg	107	21.0	16.5 J	13.1	16.2	10.7	3.30 J	4.40 U	8.63	39.7
C2-Naphthalenes			ug/kg	210	18.6	66.5 J	21.7	30.6	16.8	5.70 UB	4.90 UB	16.6	31.9
C2-Phenanthrenes/Anthracenes			ug/kg	167	27.2	24.8 J	18.9	22.8	16.0	6.50	3.70 J	18.4	112
C3-Benzo(a)anthracenes/Chrysenes			ug/kg	4.30 U	16.0 U	4.20 U	4.20 U	17.3	4.00 U	4.30 U	4.40 U	10.2	70.9
C3-Fluorenes			ug/kg	40.3	16.0 U	4.20 U	4.20 U	18.3	4.00 U	4.30 U	4.40 U	4.80 U	52.4
C3-Naphthalenes			ug/kg	129	19.9	36.7 J	22.5	14.6	9.50 UB	4.30 UB	4.40 UB	13.0 UB	36.0
C3-Phenanthrenes/Anthracenes			ug/kg	46.0	15.3 J	12.1 J	6.80	16.9	9.30	2.80 J	2.40 J	10.2	77.3
C4-Benzo(a)anthracenes/Chrysenes			ug/kg	4.30 U	16.0 U	4.20 U	4.20 U	17.0	4.00 U	4.30 U	4.40 U	4.80 U	57.0
C4-Naphthalenes			ug/kg	64.6	16.0 U	15.3 J	13.4	11.0	5.60	4.30 U	4.40 U	9.22	27.6
C4-Phenanthrenes/Anthracenes			ug/kg	23.9	16.0 U	3.20 J	4.20 U	9.20	4.00 U	4.30 U	4.40 U	4.66 J	32.7
Chrysene			ug/kg	189	33.7	23.1 J	13.0	56.8	49.7	13.9	24.1	65.2	126
Dibenzo(a,h)anthracene			ug/kg	19.7	16.0 U	2.60 J	2.40 J	6.65	4.70	4.30 U	4.40 U	13.8	24.6
Fluoranthene			ug/kg	420	66.4	53.4 J	32.7	86.8	91.7	29.8	74.2	142	197
Fluorene			ug/kg	230	15.2 J	71.1 J	15.3	16.3	20.0	6.00	14.0	7.97	28.0
Indeno(1,2,3-cd)pyrene			ug/kg	77.0	13.7 J	5.10 J	3.50 J	20.9	16.4	5.50	9.50	44.5	67.0 J
Naphthalene			ug/kg	268	22.8	56.2 J	12.8	15.0	146	6.70	30.3	25.1	23.7
Perylene			ug/kg	149	16.0 U	4.30 J	4.20 U	9.63	162	7.30	7.80	26.8	39.9
Phenanthrene			ug/kg	792	65.7	126 J	52.3	62.1	79.8	29.6	89.1	57.1	111
Pyrene			ug/kg	586	101	73.6 J	44.1	109	155	48.0	115	143	226
Total PrPAHs	4,000	35,000	ug/kg	4,620	536 J	713 J	273 J	608	1,240	229	520	886	1,520
Total Organic Carbon	.,	,0	-33	-,					-,= -=				.,
Total Organic Carbon			mg/kg	3,540	877	470	618	3,210	2,640	821	708	42,300	108,000
Percent Moisture			ng/kg	0,040	011	710	010	5,210	2,040	021	700	72,000	100,000
Percent Moisture Percent Solids			%	89.3	88.6	95.2	87	85.5	89.2	89.2	90.2	79.7	85.1
reiteni 30lius			70	09.3	0.00	90.2	0/	00.0	09.2	09.2	90.2	19.1	1.C0

Susquehanna River Sediments Pre-Design Investigation Letter Report Binghamton Court Street Former MGP Site

Location ID:	NYSDEC	NYSDEC		PDI-SED-P	PDI-SED-P	PDI-SED-P	PDI-SED-P	PDI-SED-P-1	PDI-SED-P-1
Sample Depth(Feet):	Sed	Sed		1 - 2	2 - 3	3 - 4	4 - 5	0 - 2	2 - 4
Date Collected:	Class A	Class C	Units	10/28/14	10/28/14	10/28/14	10/28/14	11/05/14	11/05/14
CPAHs									
Acenaphthene			ug/kg	123	92.7 J [51.0 J]	60.0	152	99.2	201
Acenaphthylene			ug/kg	354	395 [242]	1,440	851	376	78.3
Anthracene			ug/kg	260	485 J [242 J]	1,020	817	185	220
Benzo(a)anthracene			ug/kg	355	432 [311]	1,290	1,020	152	221
Benzo(a)pyrene			ug/kg	428	496 [331]	1,470	1,060	167	219
Benzo(b)fluoranthene			ug/kg	307	341 [224]	846	741	110	182
Benzo(e)pyrene			ug/kg	303	350 [223]	864	654	110	150
Benzo(ghi)perylene			ug/kg	210	211 [165]	610	440	93.4	118
Benzo(k)fluoranthene			ug/kg	285	365 [229]	900	719	125	196
C1-Benzo(a)anthracenes/Chrysenes			ug/kg	294	372 J [214 J]	1,050	696	85.7	94.2
C1-Fluoranthenes/Pyrenes			ug/kg	724	816 [551]	2,470	1,760	206	202
C1-Fluorenes			ug/kg	115	149 [139]	246	342	51.4	63.3
C1-Naphthalenes			ug/kg	86.6	55.1 [52.8]	74.1	277	184	149
C1-Phenanthrenes/Anthracenes			ug/kg	322	377 [236]	1,430	1,040	185	302
C2-Benzo(a)anthracenes/Chrysenes			ug/kg	188	264 J [99.3 J]	397	331	55.6	47.1
C2-Fluorenes			ug/kg	195	286 [186]	438	498	33.6	98.1
C2-Naphthalenes			ug/kg	104	97.7 J [55.2 J]	98.5	226	108	167
C2-Phenanthrenes/Anthracenes			ug/kg	353	336 [226]	1,070	787	95.3	207
C3-Benzo(a)anthracenes/Chrysenes			ug/kg	158	212 J [51.1 J]	125	159	72.1	33.2
C3-Fluorenes			ug/kg	168	188 J [84.3 J]	235	211	37.7	78.6
C3-Naphthalenes			ug/kg	130	102 J [54.8 J]	130	180	53.5	420
C3-Phenanthrenes/Anthracenes			ug/kg	285	267 J [137 J]	439	344	190	87.1
C4-Benzo(a)anthracenes/Chrysenes			ug/kg	95.3	242 J [54.7 J]	77.8	102	39.0	4.30 U
C4-Naphthalenes			ug/kg	131	119 J [70.2 J]	183	202	36.5	585
C4-Phenanthrenes/Anthracenes			ug/kg	124	111 J [40.0 J]	89.7	90.7	422	25.2
Chrysene			ug/kg	376	514 [327]	1,220	978	217	259
Dibenzo(a,h)anthracene			ug/kg	67.7	77.0 [50.6]	183	153	24.6	36.1
Fluoranthene			ug/kg	522	695 [528]	1,380	1,630	396	544
Fluorene			ug/kg	98.6	118 [132]	178	302	131	141
Indeno(1,2,3-cd)pyrene			ug/kg	184 J	206 J [156]	514 J	406 J	86.1	110
Naphthalene			ug/kg	88.0	67.1 [93.8]	81.7	303	391	278
Perylene			ug/kg	114	208 J [107 J]	304	264	41.6	76.2
Phenanthrene			ug/kg	264	386 [274]	634	848	634	503
Pyrene			ug/kg	742	948 [678]	2,380	2,040	460	468
Total PrPAHs	4,000	35,000	ug/kg	4,660	5,830 [4,030]	14,200	12,500	3,650	3,770
Total Organic Carbon									
Total Organic Carbon			mg/kg	13,700	26,200 [30,500]	8,780	7,440	NA	NA
Percent Moisture								•	•
Percent Solids			%	84.7	84.6 [88.2]	87.5	89.1	94.5	86.9

See Notes on Page 9.

Lab Qualifiers	Definition
В	
J	Indicates an estimated value.
ND	None detected.
U	The compound was analyzed for but not detected. The associated value is the compound quantitation limit.

Table 2Horizontal and Vertical Delineation – Area 1

		Area 1				
Previous Investigation Location	Visual Observations (ft bss)	Total PAHs mg/kg (ft bss)	Delineation			
SS-4	None (0-0.9)	0.24 (0-0.9)	Use for horizontal delineation			
SS-3-8	None (0-0.5, 1-2)	ND (0-0.5, 1-2)	Use for horizontal delineation			
SR-104	Slight Sheen (0-2) None (2-6)	0.57 (0-1)	Use for horizontal delineation			
SD-04	Trace Sheen (0-2)	1.48 (0-0.5) 0.11 (0.5-1)	Use for horizontal delineation			
Η	Faint MGP-like odors 24-27.4	3.02 (0-0.5) 0.70 (0.5-1) 0.81 (1-2) 0.77 (2-3) 0.14(3-4)	Use for horizontal delineation			
SS-3-5	Sheen (0-0.5, 1-2) None (2-3)	230 (0-0.5) 340 (1-2)	Use for vertical delineation (2 feet)			
I	Faint MGP-like odor (0-0.4 and 2.9- 3.1)	51.4 (0-0.5) 381 (0.5-1) 1.5 (1-2) 1.4 (2-3) 0.48 (3-4)	Use for vertical delineation (1 foot)			
I-1	None	0.17(0-2)	Use for horizontal delineation.			
SS-3-6	Slight sheen (0-0.5, 1-2, 2-3)	130 (0-0.5) 12 (1-2)	Use for vertical delineation (1 foot)			
SS-3	Sheen (0-0.5, 0.5-1)	1979 (0-1)				
J	Light NAPL coating, sheen, NAPL blebs, MGP-like odor (0-0.6) Faint MGP like odor (2.6-6.9)	753/ 850 (1-2) 4.71 (2-3) 4.61 (3-4)	Use for vertical delineation (2 feet)			
SS-3-3	Sheen (0-0.5, 1-2, 2-4)	31/26 (0-0.5) 720 (1-2) 2 (3-4)	Use for vertical delineation (2 feet)			
SS-3-7	None (0-0.5, 1-2)	1.8 (0-0.5) 2.9 (1-2)	Use for horizontal delineation			
SS-3-4	None (0-0.5, 1-2)	2.6 (0-0.5) 6.5 (1-2)	Use for horizontal delineation			
SD-05	None (0-0.5)	245 (0-0.8)				
SED-2	NA	4230 (0-0.5)				
К	Trace NAPL blebs, trace sheen MGP like odor (0.5-0.8) Trace blebs, sheen, MGP-like odor (2- 2.9)	694 (1-2) 10.1 (2-3) 7.65 (3-4)	Use for vertical delineation (3 feet)			
SS-3-1	Sheen (0-0.5, 1-2, 2-3) None (3-4)	360 (0-0.5) 1,092 (1-2) 4.1 (3-4)	Use for vertical delineation (3 feet)			
SR-102	Staining/ Sheen (0-2) Slight Sheen (8- 14) None (2-8, 14- 36)	308/108 (0-2)				
SS-3-2	Sheen (0-0.5)	430 (0-0.5)				
L	Black staining, trace sheen, (0.4-0.7) Trace sheen, faint MGP like odor (2- 2.7)	18.3 (0-0.5) 453 (0.5-1) 526 (1-2) 101 (2-3) 10.1 (3-4)	Use for vertical delineation (3 feet)			

Table 2Horizontal and Vertical Delineation – Area 1

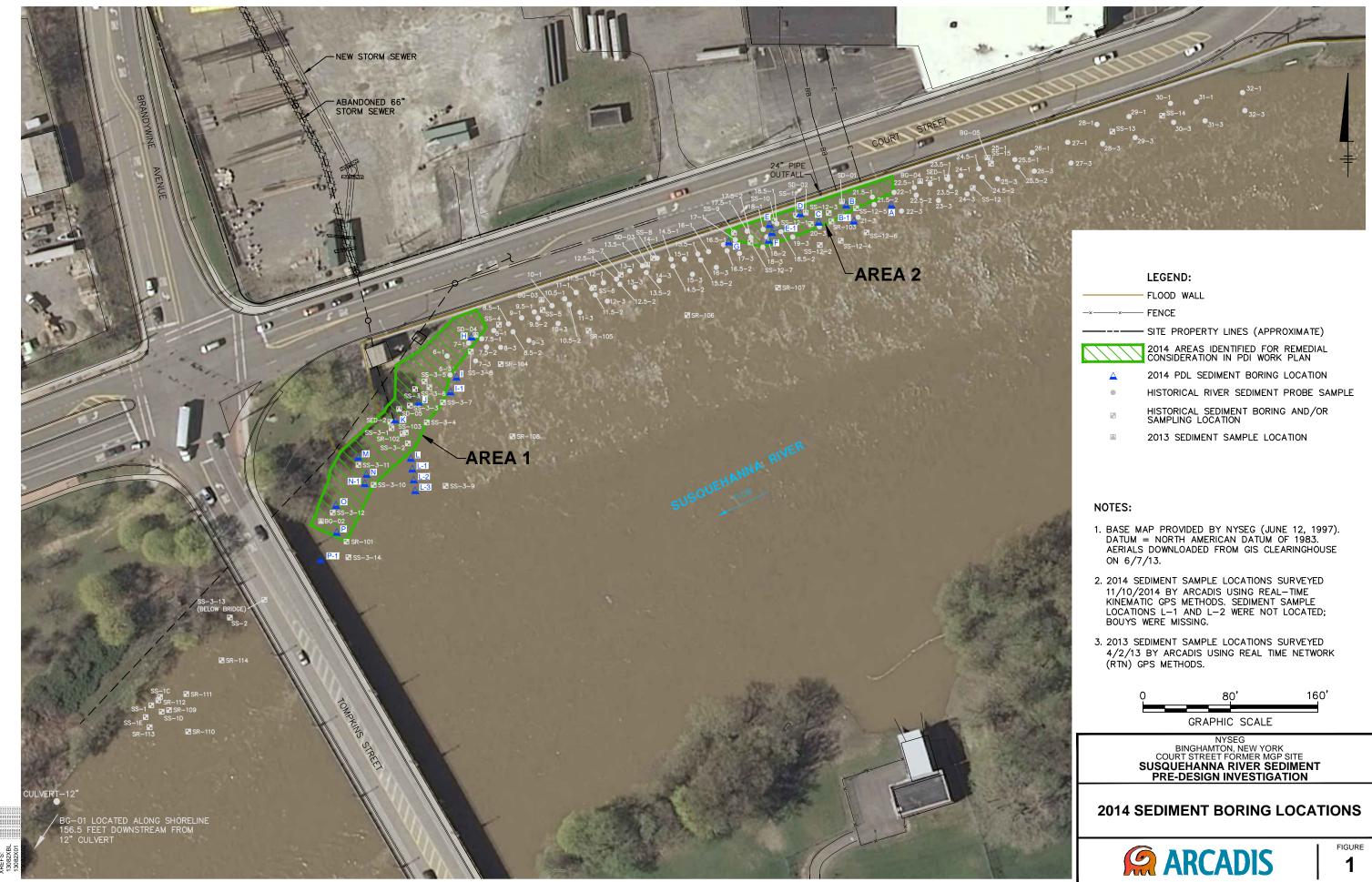
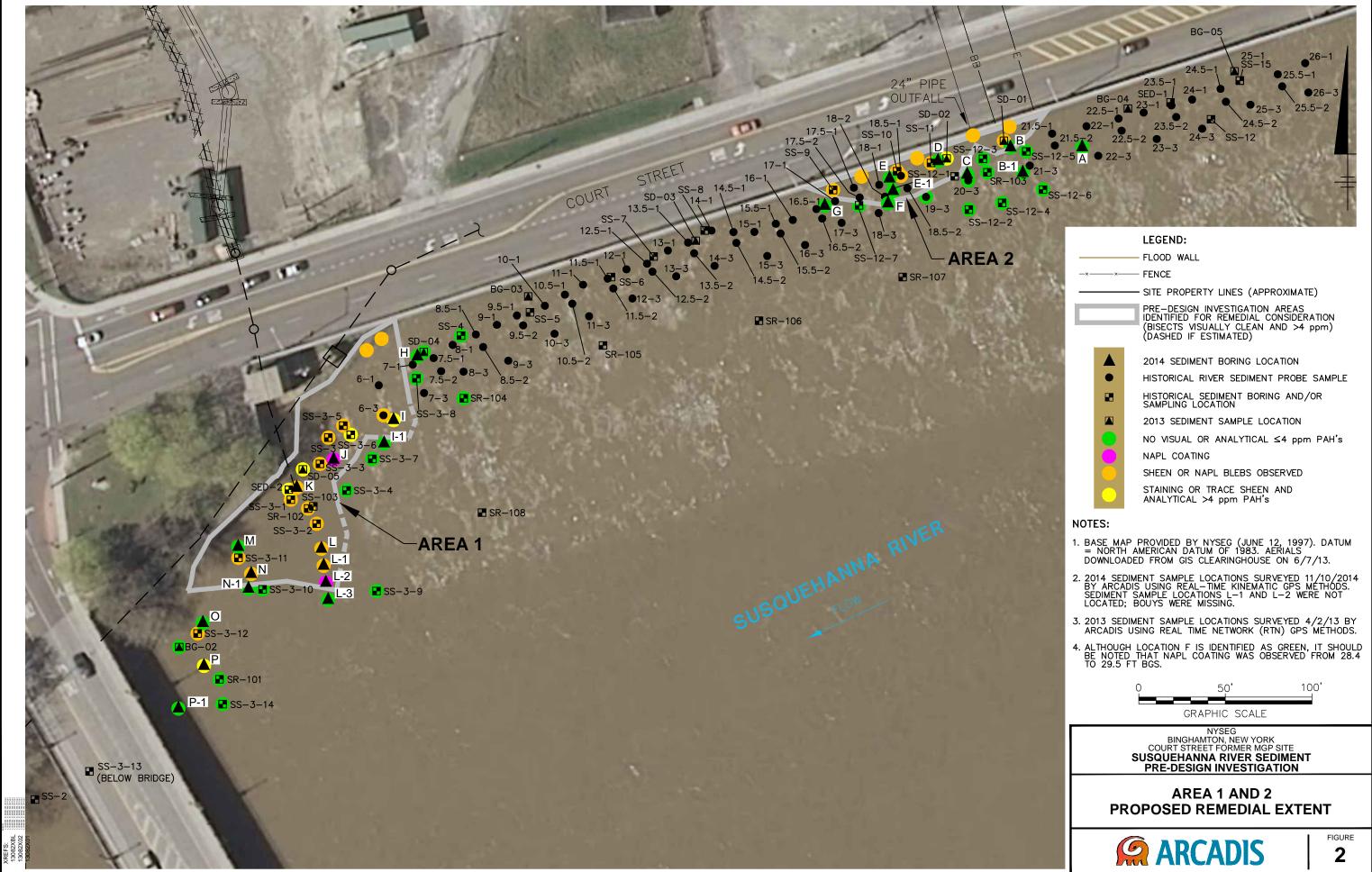

		Area 1	
Previous Investigation Location	Visual Observations (ft bss)	Total PAHs mg/kg (ft bss)	Delineation
L-1	Trace sheen (2-2.8)	1.48 (5-6)	Use for vertical delineation (5 feet)
	Trace sheen, trace NAPL bleb (4.3- 4.8)		
L-2	Black staining, light NAPL coating, MGP-like odor, trace sheen (2.7-2.9)	1.89 (0-2) 3.15(2-3) 689 (3-4) 201 (4 6)	
L-3	Faint MGP-like odor (4.2-4.5) None	391 (4-6) 1.49(2-4)	Use for horizontal delineation
SS-3-9	None	ND (0-0.5) 7.2J (1-2)	Use for horizontal delineation
SS-3-11	Slight Sheen (0-0.5) Sheen (1-2) None (2-3)	170 (0-0.5) 140(1-2) 62 (3-4)	
Μ	None (0-20)	1.22 (2-3) 1.24 (3-4) 0.31 (4-5)	Use for horizontal delineation
Ν	NAPL blebs, trace sheen, MGP like odor (0.2-2.7) Trace NAPL bleb, faint MGP-like odor (4-4.6)	226 (0-0.5) 72 (0.5-1) 79.5 (1-2) 4.6 (2-3) 0.54(3-4) 0.71 (4-5) 0.27 (6-8)	Use for vertical delineation (2 feet)
N-1	None (0-4)	0.61 (0-2)	Use for horizontal delineation
SS-3-10	None (0-0.5, 1-2)	0.54 (0-0.5) 0.18 (1-2)	Use for horizontal and vertical delineation
SS-3-12	Sheen (0-0.5, 1-2) Slight Sheen (2-3)	26 (0-0.5) 170 (1-2)	Use for vertical delineation (2 feet)
0	None (0-6)	1.24 (2-3) 0.23 (3-4) 0.52 (4-5)	Use for horizontal delineation.
Ρ	Black staining, faint MGP-like odor (0.4-0.7) Trace sheen (2-3)	0.886 (0-0.5) 1.52 (0.5-1) 4.66 (1-2) 5.83/ 4.03 (2-3) 14.2 (3-4) 12.5 (4-5)	Use for vertical delineation (1 foot)
P-1	None	3.65 (0-2) 3.77(2-4)	Use for horizontal delineation.
BG-02	None	1.28 (0-0.2)	Use for horizontal delineation
SR-101	Little Sheen (0-2) None (2-36)	1.3 (0-2)	Use for horizontal delineation
SS-3-14	None (0-0.5, 1-2)	1 (0-0.5) 1.6 (1-2)	Use for horizontal delineation

Table 3Horizontal and Vertical Delineation – Area 2


		Area 2				
Location	Field Observations (ft bss)	Total PAHs mg/kg (ft bss)	Extent			
SS-12-5	None (0-0.5, 1-2)	ND (0-0.5) 0.31/ND (1-2)	Use for horizontal delineation			
SD-01	Little Sheen (0-0.5)	10.7/20.4 (0-0.5)				
A	Faint MGP-like odor (20-22)	0.02 (0-0.5) 0.01 (1-2) 0.01 (2-3) 0.01 (3-4)	Use for horizontal delineation			
В	Faint MGP-like odor (2-2.4)	0.23 (1-2) 0.10 (2-3) 0.05(3-4)	Use for horizontal delineation			
B-1	None	NA	Use for horizontal delineation			
SS-12-6	None (0-0.5, 1-2)	ND (0-0.5, 1-2)	Use for horizontal delineation			
SS-12-3	Sheen (0-0.5, 1-2)	2.1 (0-0.5) 2 (1-2)	Use for horizontal delineation			
SR-103	None (0-5.5)	ND (0-0.5, 1-2)	Use for horizontal delineation			
SS-12-4	None (0-0.5, 1-2)	0.05 (0-0.5) 0.31 (1-2)	Use for horizontal delineation			
SD-02	None (0-0.5)	93.8(0-0.5)				
SS-11	Heavy Sheen (0-0.4, 0.4-0.6)	301 (0-0.6)				
D	Trace sheen, faint MGP odor (0-3.1) Faint MGP like odor (4-4.4)	0.18 (1-2) 0.31 (2-3) 0.38 (3-4)	Use for horizontal delineation			
SS-12-1	Heavy Sheen (0-0.5,1- 2) None (2-3)	5.7 (0-0.5) 2.3 (1-2) 0.06 (3-4)	Use for vertical delineation (1 foot)			
С	None	0.14/ 0.166 (0-0.5) 0.15(1-2) 0.27 (2-3) 0.18(3-4)	Use for horizontal delineation			
SS-12-2	None (0-0.5, 1-2)	0.15 (0-0.5) 0.11 (1-2)	Use for horizontal and vertical delineation			
SS-10	Heavy Sheen (0-0.7)	26 (0-0.7)				
E	None	1.34 (0-4)	Use for horizontal delineation			
E-1	None	NA	Use for horizontal delineation			
SS-12-7	None (0-0.5, 1-2)	0.22 (0-0.5) 0.18 (1-2)	Use for horizontal delineation			
SS-9	Heavy Sheen (0-0.7)	16 (0-0.7)				
G	None – short boring (recovery only to 2.6 feet)	2.36 (0-0.5) 0.44 (1-2) 2.38 (2-3) 1.09 (3-4)	Use for horizontal delineation			
F	Sheen, light to moderate NAPL coating, faint to moderate odor (28.4-29.5 feet	0.21 (0-0.5) 0.16 (1-2) 0.31 (2-3) 0.27 (3-4)	Use for horizontal delineation			

Figures

PM:S. POWLIN TR: D. CORNELL LYR:(Opt)ON=";OFF="TEF" 5AVED: 5/14/2015 8:57 AM ACADVER: 18.1S (LMS TECH) PAG PIC:(Opt) (ja Ë LAF, R. ALLEN, E. KRAHMER PORT/SRSPDIMP/13082801

		FLOOD WALL
×	×	FENCE
		SITE PROPERTY LINES (APPROXIMATE)
		PRE-DESIGN INVESTIGATION AREAS IDENTIFIED FOR REMEDIAL CONSIDERATION (BISECTS VISUALLY CLEAN AND >4 ppm) (DASHED IF ESTIMATED)
		2014 SEDIMENT BORING LOCATION
	•	HISTORICAL RIVER SEDIMENT PROBE SAMPLE
		HISTORICAL SEDIMENT BORING AND/OR SAMPLING LOCATION
		2013 SEDIMENT SAMPLE LOCATION
		NO VISUAL OR ANALYTICAL ≤4 ppm PAH's
		NAPL COATING
		SHEEN OR NAPL BLEBS OBSERVED
		STAINING OR TRACE SHEEN AND ANALYTICAL >4 ppm PAH's
IOTE	S:	
		PROVIDED BY NYSEG (JUNE 12, 1997). DATUM MERICAN DATUM OF 1983. AERIALS D FROM GIS CLEARINGHOUSE ON 6/7/13.
SEL	DIMENT S	ENT SAMPLE LOCATIONS SURVEYED 11/10/2014 USING REAL-TIME KINEMATIC GPS METHODS. AMPLE LOCATIONS L-1 AND L-2 WERE NOT OUYS WERE MISSING.
3. 20 AR	13 SEDIM CADIS US	ENT SAMPLE LOCATIONS SURVEYED 4/2/13 BY ING REAL TIME NETWORK (RTN) GPS METHODS.
I. AL BE TO	THOUGH NOTED 29.5 FT	OCATION F IS IDENTIFIED AS GREEN, IT SHOULD HAT NAPL COATING WAS OBSERVED FROM 28.4 BGS.
	(50' 100'

Attachment A

Susquehanna River Sediment Assessment Report

Mr. Anthony Karwiel New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7014

Subject: Binghamton Court Street Former MGP Site Susquehanna River Sediment Assessment Report

Dear Mr. Karwiel:

This letter presents the results of a sediment assessment completed in connection with the Court Street former manufactured gas plant (MGP) site (the "site") located in Binghamton, New York. The sediment assessment was conducted by ARCADIS, on behalf of NYSEG, between March 11 and May 21, 2013. Due to inclement weather, the fieldwork was performed over three separate mobilizations. The assessment was conducted in accordance with the following correspondence:

- Court Street Sediment Assessment Work Plan dated August 1, 2012;
- New York State Department of Environmental Conservation's (NYSDEC) comment email dated September 20, 2012;
- ARCADIS' Response to comments email dated September 25, 2012 to NYSDEC;
- NYSDEC, NYSEG and ARCADIS conference call on December 11, 2012; and
- ARCADIS' email to NYSDEC summarizing the agreed upon scope between NYSEG and NYSDEC dated January 4, 2013.

A discussion of the assessment objectives is provided below, followed by a discussion of the completed fieldwork and results of the assessment.

Objectives and Background

The objective of the work was to reassess the quality of sediments in the Susquehanna River adjacent to the site. The purpose for the reassessment was to evaluate potential changes in the distribution and presence of MGP-impacted

Imagine the result

g:\clients\iberdrola usa\nyseg\court street binghamton\08 regulatory documents\b0013082_0011311100_sediment assessment report.doc

ARCADIS of New York, Inc. 6723 Towpath Road PO Box 66 Syracuse New York 13214-0066 Tel 315.446.9120 Fax 315.446.8053 www.arcadis-us.com

ENVIRONMENT

Date: August 19, 2013

Contact: David A. Cornell, P.G.

Phone: 315.671.9379

Email: David.Cornell@arcadis-us.com

Our ref: B0013082 #2.04

sediments that were observed approximately 11 years ago (as documented in the 2002 Remedial Investigation [RI] Report). NYSEG believes that changes in the sediment deposits may have resulted from two significant high-flow events that have occurred in the Susquehanna River near the site over the past 11 years. Information on these two record-setting, 100+ year floods is presented in the following table:

Susquehanna River at Binghamton Flooding Events								
Date	Flood Crest Stage							
June 28, 2006	25.0 feet							
September 8, 2011	25.7 feet							

Notes:

Flood stage data obtained from the United States Geologic Survey

(USGS) web page: http://www.usgs.gov/water/.

Flood stage is 14.0 feet. No other historical crests occurred above

14 feet between 2002 and 2013.

These high-flow events may have affected the distribution and quality of sediments near the site. The following is a list of major flooding events and annual high flow events that have occurred near the site since the RI was completed.

Susquehanna River at Conklin Annual High Flow Events									
Date	Gauge Height (feet)	Streamflow (cfs)							
March 27, 2002	12.09	23,700							
March 23, 2003	14.73	33,500							
September 18, 2004	19.01	54,700							
April 3, 2005	18.08	49,400							
June 28, 2006	25.02	76,800							
March 28, 2007	12.64	25,100							
March 9, 2008	14.26	30,700							
March 11, 2009	12.33	24,100							
January 25, 2010	13.39	27,600							
September 8, 2011	23.94	72,100							
January 28, 2012	9.08	15,000							

Notes:

Due to available data, the Conklin gauge was used for annual high flows.

Gauge height data obtained from the USGS web page: http://www.usgs.gov/water/.

Two interim remedial actions have also been performed on the upland portion of the site that were designed to mitigate potential transport of non-aqueous phase liquid (NAPL) to the river. These include the passive NAPL barrier that was installed between the former MGP site and the river in 2006, and replacement of the 66-inch storm sewer in 2012 which potentially served as a historical conduit for NAPL migration to the river. The mitigation of these potential NAPL sources to the river

could also have an impact on the distribution of MGP-related impacts in present-day river sediments.

Sediment Probing and Reconnaissance

Sediment probing and reconnaissance was conducted along the same area (north bank) of the Susquehanna River that was investigated during the RI (Figure 1). This area extends from approximately 100 feet upstream of the 24-inch outfall (near river sediment probe sample 32-1) to approximately 150 feet downstream of the Tompkins Street Bridge (near sediment sampling location SS-1E), for a total of approximately 900 feet of river reach. The assessment included probing along transects perpendicular to the river bank on 25-foot spacings across the entire investigated reach. Spot probing was also completed between transects. Impacts (i.e., staining, sheen or NAPL) observed at any probing location were further delineated radially from that point with additional probing in an attempt to define the approximate lateral extent of impacts. Specific attention was paid to the four "potential areas of sediment to be addressed" discussed in a February 2003 meeting between NYSDEC, NYSEG and ARCADIS (formerly BBL). These areas are depicted on Figure 1 as Areas A, B, C and D.

Additionally, as requested by NYSDEC, spot probing was also conducted at the first two major sediment depositional areas downstream from Area A. These areas were identified by continuous spot probing between the Tompkins Street Bridge and the downstream dam located approximately 3,300 feet downstream of the site. The two downstream depositional areas depicted on Figure 2 were identified as the "south shore bend area" and the "downstream dam/abutment structure area.

Probing was performed by manually pushing a 1/2-inch diameter steel rod into the sediments until the rod could not be advanced further. Water depth, sediment thickness, general sediment description (by sight and feel), and any observed impacts produced by the probing were recorded in the field log book. In addition to probing, the assessment also included manually overturning rocks, cobbles, and/or debris to determine if potential MGP-related materials were present beneath these objects.

Sediment Sampling

Twelve sediment samples (plus quality assurance/quality control [QA/QC] samples) were collected from 10 sampling locations (SD-1 through SD-5 and BG-1 through BG-5) within visually impacted and unimpacted areas identified during the probing and reconnaissance work. Sample locations identified with an SD prefix were collected from visually impacted areas or from areas previously identified to contain impacted sediments. Sample locations identified with a BG prefix were collected from visually unimpacted areas. All 12 samples were analyzed for polycyclic aromatic

Mr. Anthony Karwiel August 19, 2013

hydrocarbons (PAHs) using United States Environmental Protection Agency (USEPA) Method SW8270C and total organic carbon (TOC) by the Lloyd-Kahn method. Sediment sampling locations are shown on Figures 1, 2 and 3.

Sediment sampling at each location was initially attempted by manually driving a 4foot long steel barrel (i.e., Macrocore[®]) containing a 2-inch diameter disposable liner and sampling shoe (to hold sediment in the tubing) into the sediment until refusal was encountered. If the sampling method described above was unsuccessful at penetrating the sediment surface or collecting adequate sample volume, then samples were collected using a grab sampler (stainless steel scoop).

Sediment samples were described with respect to predominant sediment types, texture and color. In addition, the presence of odors, sheens, tar, and discoloration were also recorded (if any observed). Sediment probing and sampling observations are summarized in Table 1.

Data Validation

ARCADIS validated the laboratory analytical data and prepared a data usability summary report (DUSR) for each individual sample delivery group (SDG) using the most-recent versions of the USEPA's Function Guidelines (USEPA, 1999; 2002) and USEPA Region II SOPs for data validation. The DUSRs include an assessment of data accuracy, precision, and completeness; significant quality assurance problems, solutions, corrections, and potential consequences; and analytical data validation reports. The results of the data validation have been incorporated into the analytical data presented in Table 2.

Survey

All probing and sampling locations, as well as newly-identified outfalls were surveyed using a survey-grade global positioning system (GPS) device. The horizontal position of each survey point was surveyed in reference to the North American Datum of 1983 (NAD 83). The elevation of the sediment surface at each survey point was surveyed in reference to the North American Datum of 1988 (NAVD 88).

Sediment Assessment Findings

The following discussion of the 2013 sediment assessment findings is divided into subsections based on the areas that were investigated. Figures 1 and 3 were developed to support the discussion. Figure 1 depicts the 2013 sediment sampling locations and visual observations (red hatched areas) as well as historical sampling locations from the 2002 RI and "potential areas of sediment to be addressed"

Mr. Anthony Karwiel August 19, 2013

(orange hatched areas) established in 2003. The 2013 sediment sampling analytical results are summarized in green text boxes on Figure 3. The total PAH (TPAH) concentrations shown on Figure 3 are a summation of the 17 total priority pollutant PAHs. Figure 3 also depicts the historical analytical results and TPAH isoconcentration contours established during the 2002 RI.

<u>Area A</u>

Observations made during the RI fieldwork described Area A as a soft sediment deposit containing a sheen in the upper approximate 1-foot of sediment. TPAH concentrations measured during the RI from the upper 2 feet of sediment in this area ranged from 1.1 parts per million (ppm) (SR-111) to 45 ppm (SS-1D).

During the 2013 assessment, extensive probing was conducted within and near the edges of Area A. A soft sediment deposit could not be identified and no sample could be collected. Only trace amounts of sand (<0.1 feet) between cobbles, boulders and gravel were identified during the probing in this area. Additionally, no sheens were observed at any of the locations in this area during the 2013 probing event. One analytical sample (BG-1) was collected from the first area containing recoverable sediment (described as a fine-to-medium sand and gravel with little silt), approximately 250 feet downstream from Area A. The TPAH concentration in that sample was 3 ppm.

<u>Area B</u>

During the RI, sheens and elevated PAHs were observed in the upper approximately two feet of sediments in this area, which is located near the outfall of the 66-inch storm sewer that drains stormwater from a large portion of the City of Binghamton. Sediment samples collected from this area during the RI contained TPAH concentrations between 0.54 ppm (SS-3-10) and 1,979 ppm (SS-3).

During the 2013 assessment, extensive probing was conducted in Area B. Sediment depths encountered during the probing and sampling were less than one foot and sediments were generally described as sand and gravel with little silt. Sheens were not generated at any sediment probing/sampling location in this area. Two analytical samples [BG-2 (0-0.2') and SD-5 (0-0.5')] were collected within Area B. The TPAH concentration at BG-2 was 1.3 ppm and the TPAH concentration at SD-5 was 240 ppm. Although the TPAH concentration at BG-2 is less than the range of isoconcentration contours depicted on Figure 3 (originally presented in the RI report), sample SD-5 falls within the concentration range for that location.

Mr. Anthony Karwiel August 19, 2013

The fact that no sheens were generated in Area B during the 2013 probing assessment suggests that the condition of the sediment in this area has improved since the RI. Nevertheless, sample SD-5 contained a significant concentration of PAHs, and is consistent with the concentration estimated to be at that location during the RI. The potential source of the PAHs was not determined, and could either be MGP-related or related to the storm sewer, which drains a large portion of the City of Binghamton and could serve as a source of PAHs unrelated to the site. Conversely, at sampling location BG-2, the TPAH concentration of 1.3 ppm is considerably lower than the 20-100 ppm that was estimated to be there during the RI (Figure 3).

It is important to note that when Area B was investigated during the RI, both manual probing and split-spoon sampling from a barge-mounted drill rig were used. With the river bottom in this area being somewhat armored, it is possible that some of the impacted sediment identified using the drilling rig during the RI may still be present but was unable to be penetrated by the recent manual probing.

<u>Area C</u>

The RI fieldwork identified an isolated area of sheen-producing sediments in Area C. A sample collected at SS-6 during the RI contained 35 ppm of TPAH. The 2013 probing of the sediments in this area produced no sheens. Riverbed material encountered during the probing was described as sand, gravel and cobbles with little to no silt and penetration depths of 0.2 feet or less. Analytical samples collected just upstream (SD-3) and downstream (BG-3) of Area C contained TPAH concentrations of 1.6 ppm and 0.97 ppm, respectively. These concentrations are similar to or less than TPAH concentrations documented during the RI.

<u>Area D</u>

Area D comprises a region of sheen-producing sediments identified during the RI. The area is located around and downstream of the outfall of an apparently inactive 24-inch pipe. TPAH concentrations in sediment samples collected during the RI ranged from below detection limits (SS-12-5) to 301 ppm (SS-11).

The extent of sheen-producing sediments observed during the 2013 assessment is depicted on Figure 1 as Area F. As shown on Figure 1, the boundaries of Areas F and D are similar, although the upstream extent of sheen-producing sediments has decreased slightly. Likewise, sediment samples collected in 2013 at locations SD-1 and SD-2 contained 11 ppm and 83ppm of TPAH, respectively, which is consistent with the sampling results reported in the RI Report for Area D. Therefore, Area D appears to remain relatively unchanged between the RI fieldwork and the 2013 assessment fieldwork.

Mr. Anthony Karwiel August 19, 2013

<u>New Area E</u>

As depicted on Figure 1, a new area (Area E) of sediments that produced a sheen during probing was observed during the 2013 assessment. Area E is a square-shaped area that is approximately 30 feet wide and is located 30 to 40 feet upstream of Area B. Two sediment samples were collected at sediment sampling location SD-4 at different depths. The sample collected from 0 to 0.5 feet below the sediment surface (ft bss) contained a TPAH concentration of 1.5 ppm, and the sample collected from 0.5 to 1.0 ft bss contained 0.11 ppm of TPAH. Although recent and historical TPAH concentrations within Area E are low, visible sheens in shallow sediments are present.

Downstream Depositional Areas

As requested by NYSDEC, additional probing was conducted during the assessment to locate the first two depositional areas downstream from Area A. The two downstream areas identified during the fieldwork are shown on Figure 2 as the *South Shore Bend Area* and the *Downstream Dam/Abutment Structure Area*. Both of these areas were extensively probed and visual impacts were not observed in either area. Probing depths ranged between 0 and 1.5 feet. Sediments consisted of sands and gravels with varying amounts of silt.

Please feel free to contact Tracy Blazicek (NYSEG) or me if you have any questions or comments.

Sincerely,

ARCADIS of New York, Inc.

David A. Cornell, P.G. Senior Geologist

Attachments

Copies: Keith White, C.P.G., ARCADIS Tracy Blazicek, CHMM, NYSEG

This letter was prepared by ARCADIS as an account of work sponsored by NYSEG. Neither Company or Supplier, nor any person acting on its behalf: (a) makes any warranty, express or implied, with respect to the use of any information, apparatus, equipment, method, design, system, program or process disclosed in this report or that such use may not infringe privately owned rights; or (b) assumes any liability with respect to the use of, or for any damages, losses, costs, expenses or claims, resulting from or arising out of the use of any information, apparatus, equipment, method, design, system, program or process disclosed in this letter.

Table 1 Summary of Susquehanna River Sediment Probing and Sampling Assessment Conducted 4/1/13-4/3/13

NYSEG - Court Street Former MGP Site Binghamton, New York

Sampling or Probing Transect Location	Date	Probing Depth (feet)	Water Depth (feet)	Northing	Easting	Sediment/ Ground Elevation	Sampling Method	Location Description	Sediment Description	Impacts Observed	
Sediment Sam	npling Loca	itions		•		•					
BG-1	4/2/13	0.5	1	766188.0	1006043.1	832.6	Trowel	West of Tompkins St. bridge, 200' downstream from Tompkins St. bridge, edge of north bank.	Brown fine SAND and fine GRAVEL, little Silt.	No Obvious Impacts	
BG-2	4/2/13	0.2	2.5	766574.2	1006372.7	832.6	Trowel	East of Tompkins St. bridge, 20' upstream from Tompkins St. bridge, edge of north bank, 100' downstream from 66"outfall pipe.	Brown fine SAND and fine GRAVEL, little Silt.	No Obvious Impacts	
BG-3	4/2/13	1.5	1	766776.9	1006574.5	832.8	MacroCore	East of Tompkins St. bridge, 320' upstream from Tompkins St. bridge, edge of north bank, 160' upstream from 66"outfall pipe.	Brown fine to medium SAND and GRAVEL, little Silt, Cobbles.	No Obvious Impacts	
BG-4	4/2/13	0.5	1.5	766885.5	1006921.2	832.7	Trowel	East of Tompkins St. bridge, edge of north bank, 140' upstream from 24" RCP outfall pipe.	Brown fine to medium SAND and GRAVEL, little Silt, Cobbles.	No Obvious Impacts	
BG-5	4/2/13	0.5	1	766907.1	1006982.8	832.7	Trowel	East of Tompkins St. bridge, edge of north bank, 240' upstream from 24" RCP outfall pipe.	Brown fine to medium SAND and GRAVEL, little Silt, Cobbles.	No Obvious Impacts	
SD-1	4/2/13	0.5	3	766866.9	1006849.5	832.7	MacroCore	East of Tompkins St. bridge, edge of north bank, 20' upstream from 24" RCP outfall pipe.	Brown SILT, little fine Sand, fine Gravel, Wood debris.	Little sheen, MGP-like odor	
SD-2	4/2/13	0.5	3	766856.7	1006816.4	832.6		East of Tompkins St. bridge, edge of north bank, 20' downstream from 24" RCP outfall pipe.	Brown SILT, little Organics (roots), fine Sand, fine to medium Gravel.	Sheen; moderate to strong MGP-like odor	
SD-3	4/2/13	1	2.5	766809.1	1006671.3	832.8	MacroCore	East of Tompkins St. bridge, edge of north bank, 150' downstream from 24" RCP outfall pipe.	Brown fine to medium SAND, some Silt, fine to medium Gravel.	No Obvious Impacts	
SD-4	4/2/13	2	1	766744.8	1006514.1	832.7	MacroCore	260' East of Tompkins St. bridge, 100' upstream from 66" outfall pipe, edge of north bank	Brown fine to medium SAND, some Silt, fine to medium Gravel.	Trace sheen	
SD-5	4/2/13	0.5	3	766676.9	1006444.2	832.8	MacroCore	160' East of Tompkins St. bridge, edge of north bank, at 66"outfall pipe.	Brown fine SAND and SILT, over Gravel.	No Obvious Impacts	
Transect Loca	tions										
T-00	3/11/13	0.2	6-8	766678.1	1006442.8	832.2		160' East of Tompkins St. bridge, edge of north bank, at 66"outfall pipe.	SAND & GRAVEL, little Silt & Cobbles	No Obvious Impacts	
T-01	3/11/13	0.2-0.5	1-3	766715.3	1006461.0	832.3		East of Tompkins St. bridge, 25' East (upstream) of 66"outfall pipe.	SAND & GRAVEL, little Silt & Cobbles	No Obvious Impacts	
T-02	3/11/13	0-1.7	1-3	766732.1	1006479.9	832.2		East of Tompkins St. bridge, 50' upstream from 66"outfall pipe.	SAND & GRAVEL, little Silt & Cobbles	No Obvious Impacts	
T-03	3/11/13	0.3-2.0	1.5-2.7	766741.3	1006497.6	832.3		75' upstream from 66"outfall pipe.	SAND & GRAVEL, little Silt & Cobbles	No Obvious Impacts	

See Assumptions and Notes on Page 2.

Table 1 Summary of Susquehanna River Sediment Probing and Sampling Assessment Conducted 4/1/13-4/3/13

NYSEG - Court Street Former MGP Site Binghamton, New York

Sampling or Probing Transect Location	Date	Probing Depth (feet)	Water Depth (feet)	Northing	Easting	Sediment/ Ground Elevation	Sampling Method	Location Description	Sediment Description	Impacts Observed	
Transect Loca	ations (Con	t.)									
T-04	3/11/13	0.2-1.5	0.3-2.0	766756.7	1006521.7	832.4		100' upstream from 66"outfall pipe.	SAND & GRAVEL, some Silt, little Cobbles	Trace sheen 5 to 6 ft from shore	
T-05	3/11/13	0.1-0.5	1-3	766771.7	1006545.6	832.1		125' upstream from 66"outfall pipe.	SAND & GRAVEL, little Silt & Cobbles	Trace sheen 5 to 10 ft from shore; Sheen ends between T-4 and T-5	
T-06	3/11/13	0.2-0.6	0.8-3.5	766778.0	1006569.0	831.8		150' upstream from 66"outfall pipe.	SAND & GRAVEL, little Silt & Cobbles	No Obvious Impacts	
T-07	3/11/13	0.0-1.0	0.7-2.8	766787.3	1006591.8	833.0		175' upstream from 66"outfall pipe.	SAND & GRAVEL, some Silt, little Cobbles	No Obvious Impacts	
T-08	3/11/13	0.1-1.0	0.6-2.5	766795.5	1006618.4	832.1		200' upstream from 66"outfall pipe.	SAND & GRAVEL, some Silt, little Cobbles	No Obvious Impacts	
T-09	3/11/13	0.8-1.0	1-2	766802.4	1006641.3	832.2		225' upstream from 66"outfall pipe.	SAND & GRAVEL, some Silt, little Cobbles	No Obvious Impacts	
T-10	3/11/13	1.5	2.0	766810.1	1006664.5	832.4		250' upstream from 66"outfall pipe.	SAND & GRAVEL, little Silt & Cobbles	Trace sheen during probing; could not recreate sheen by additional probing.	
T-11	3/11/13	0.2	1.0	766817.2	1006689.0	832.2		275' upstream from 66"outfall pipe.	SAND & GRAVEL, little Silt & Cobbles, trace Concrete	No Obvious Impacts	
T-12	3/11/13	0.1-0.2	0.3-2.5	766825.4	1006713.0	832.2		300' upstream from 66"outfall pipe.	SAND & GRAVEL, little Silt & Cobbles, trace Concrete	No Obvious Impacts	
T-13	3/11/13	0.0-0.3	0.7-3.5	766831.8	1006736.3	832.0		100' West (downstream) from 24"outfall pipe.	SAND & GRAVEL, little Silt & Cobbles, trace Concrete	No Obvious Impacts	
T-14	3/11/13	0.2	2.5	766840.6	1006760.7	832.3		75' downstream from 24"outfall pipe.	SAND & GRAVEL, little Silt & Cobbles, trace Concrete	Sheen observed between 0 anf 5 ft from wall	
T-15	3/11/13	0.5	1.0	766847.5	1006784.4	832.1		50' downstream from 24"outfall pipe.	SAND & GRAVEL, little Cobbles, trace Concrete	Sheen observed between 0 anf 10 ft from wall	
T-16	3/11/13	0.3	3.0	766856.3	1006808.4	832.1		25' downstream from 24"outfall pipe.	SAND & GRAVEL, little Cobbles	Sheen observed between 0 anf 15 ft from wall	
T-17	3/11/13	0.5	2.0	766864.2	1006832.6	832.4		Adjacent 24"outfall pipe.	SAND & GRAVEL, little Cobbles	Sheen observed between 0 anf 5 ft from wall	
T-18	3/11/13	0.6	1.5	766871.0	1006855.8	832.3		25' East (upstream) 24"outfall pipe.	SAND & GRAVEL, little Cobbles	Sheen observed between 0 anf 5 ft from wall	
T-19	3/11/13	0.2	0.8-3.0	766879.3	1006879.6	832.3		50' Upstream from 24"outfall pipe.	SAND & GRAVEL, little Cobbles, trace Concrete	No Obvious Impacts	
T-20	3/11/13	0.0-0.3	0.5	766887.1	1006903.6	832.3		75' upstream from 24"outfall pipe.	SAND & GRAVEL, little Silt & Cobbles	No Obvious Impacts	
T-21	3/11/13	0.1-0.4	0.0-1.5	766894.2	1006926.8	832.2		100' Upstream from 24"outfall pipe.	SAND & GRAVEL, little Silt & Cobbles	No Obvious Impacts	

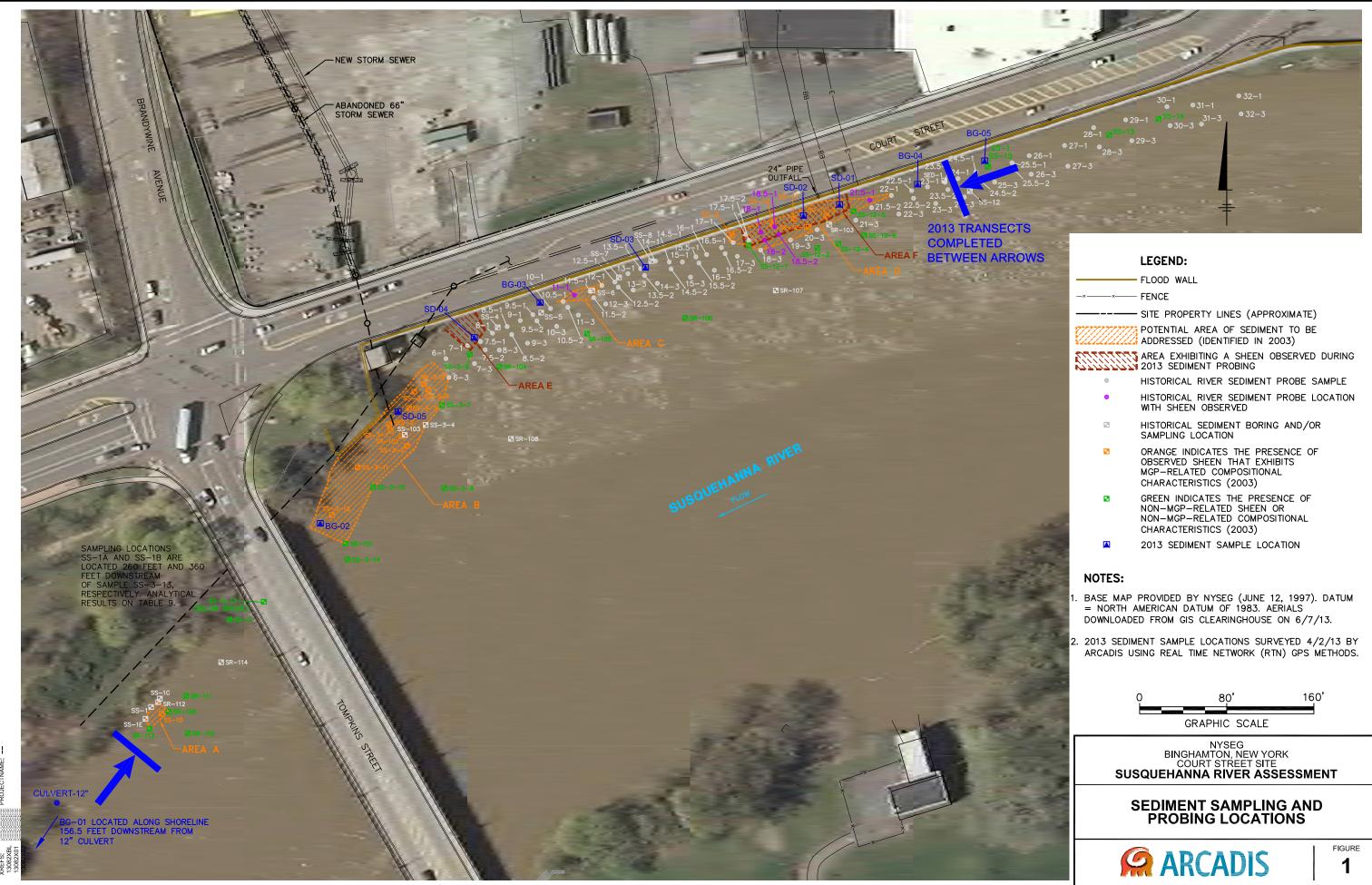
Assumptions and Notes:

*Probing was performed by manually pushing a 1/2-inch diameter steel rod until rod could not be advanced any further.

*In addition to probing, a 2-inch diameter hand auger and shovel were used at select locations.

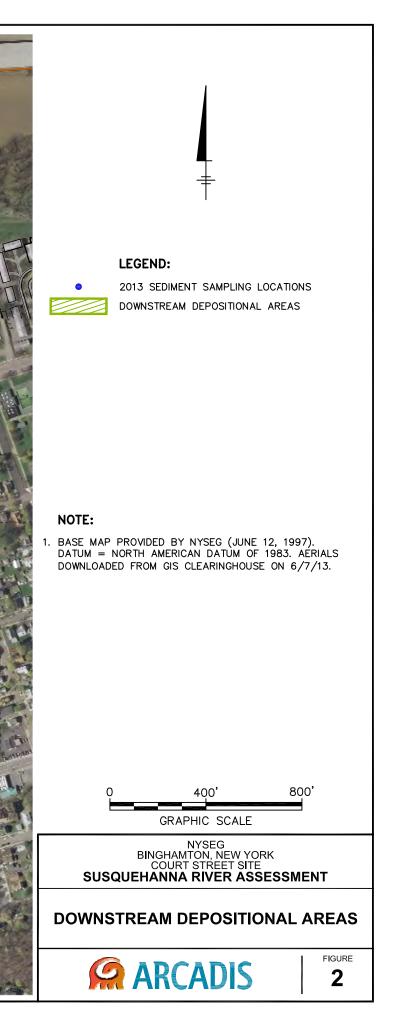
*RCP = Reinforced Concrete Pipe

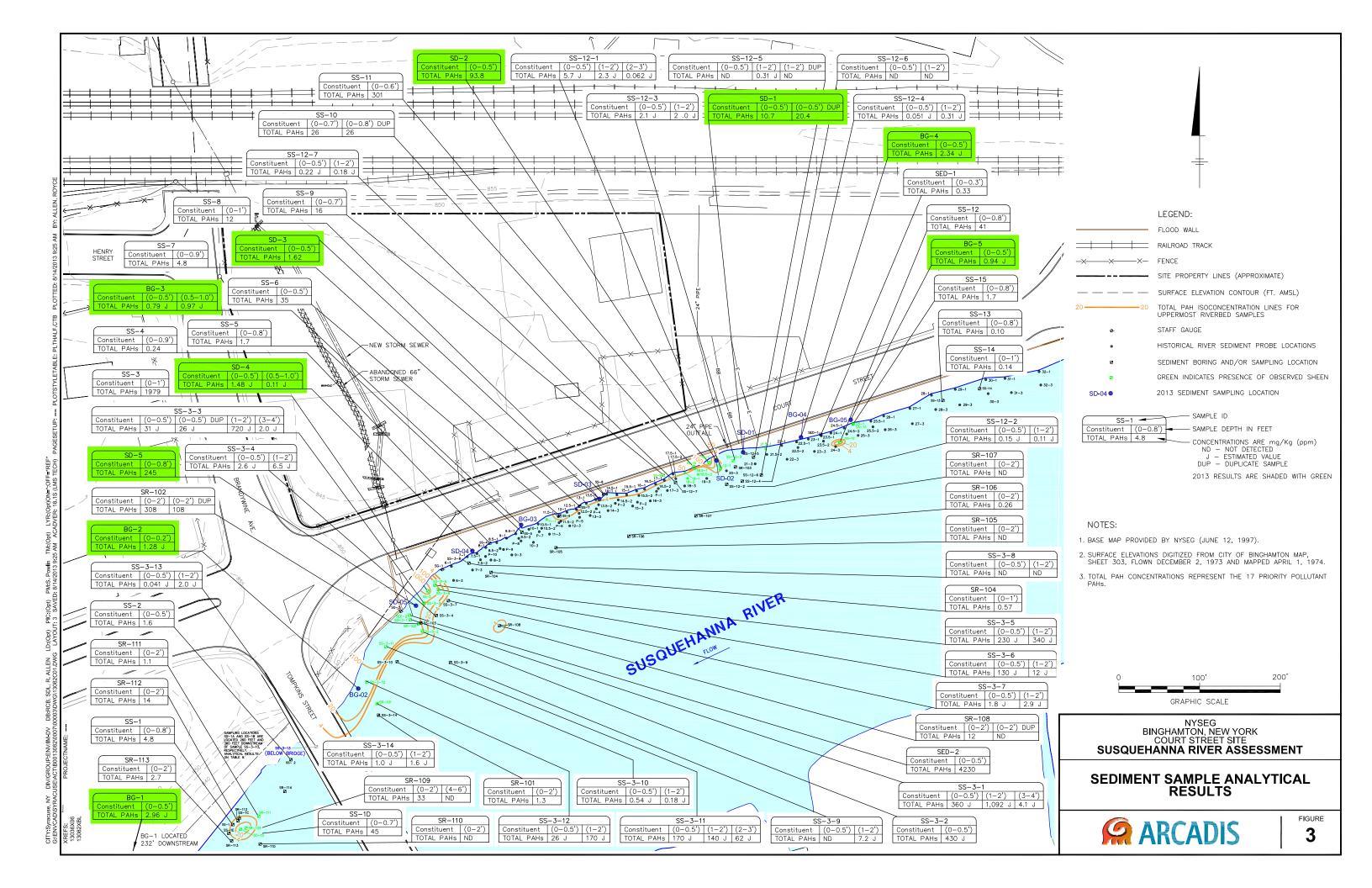
NYSEG - Court Street Former MGP Site Binghamton, New York


Location ID:		BG-1	BG-2	BG-3	BG-3	BG-4	BG-5	SD-1	SD-2	SD-3	SD-4	SD-4	SD-5
Sample Depth(Feet):		0 - 0.5	0 - 0.2	0 - 0.5	0.5 - 1	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0.5 - 1	0 - 0.8
Date Collected:	Units	04/02/13	04/02/13	04/02/13	04/02/13	04/02/13	04/02/13	04/02/13	04/02/13	04/02/13	04/02/13	04/02/13	04/02/13
2-Methylnaphthalene	ug/kg	11 U	6.7	3.1 J	2.8 J	2.9 U	6 J	97.4 [232]	11,200	7.4	2.4 U	2.3 U	1,450
Acenaphthene	ug/kg	11 U	9.5	2.9 J	2.5 J	7.8	3.4 J	992 [1,020]	10,200	13.1	2.4 U	2.3 U	24,500
Acenaphthylene	ug/kg	69.5	31.1	29.8	42.2	37.2	20.8	502 [423]	3,780	50.1	24.4	3.2 J	6,300
Anthracene	ug/kg	91.9	34.5	42.2	23.4	61.1	20.8	598 [769]	4,090	47	26.9	3.4 J	23,100
Benzo(a)anthracene	ug/kg	250	96.9	54.7	65.7	204	74.9	462 [1,790]	3,320	128	132	5	11,900
Benzo(a)pyrene	ug/kg	301	143	87.3	113	231	92.8	619 [2,100]	4,020	199	176	11.7	15,200
Benzo(b)fluoranthene	ug/kg	250	98.1	51.6	72.3	178	83.7	271 [1,350]	1,510	111	102	4.1 J	5,740
Benzo(e)pyrene	ug/kg	236	95.3	62	84.1	146	70.9	388 [1,250]	2,190	135	117	10.1	7,440
Benzo(ghi)perylene	ug/kg	224	97.1	65.1	89.3	133	67.3	560 [1,220]	2,920	134	119	10.6	7,000
Benzo(k)fluoranthene	ug/kg	229	113	78.6	105	199	76	415 [1,350]	2,210	146	158	11.6	7,570
C1-Benzo(a)anthracenes/Chrysenes	ug/kg	139	47.9	32.5	38.9	96.2	36.9	305 [1,230]	2,250	60	50.2	2.3 U	3,260
C1-Fluoranthenes/Pyrenes	ug/kg	183	70.7	50.1	58.9	142	50.3	678 [1,380]	5,290	105	71.2	8	15,400
C1-Fluorenes	ug/kg	20.6 J	6.1	4.6 J	4.3 J	8.5	3.8 J	249 [141]	2,440	9.3	2.5 J	2.3 U	3,780
C1-Naphthalenes	ug/kg	15.2 J	7.1	5.5	4.6	3.5 J	7.5	575 [752]	16,000	9.8	2.9 J	2.3 U	3,680
C1-Phenanthrenes/Anthracenes	ug/kg	110	32.4	26.4	27.4	79.7	32.6	763 [742]	6,590	36.8	38.3	2.3 U	8,900
C2-Benzo(a)anthracenes/Chrysenes	ug/kg	114	22.3	18.7	22.8	40.3	22.5	175 [929]	1,100	27.3	23.4	2.3 U	687
C2-Fluorenes	ug/kg	24.4	6	2.6 U	4.3 J	10.1	6.2	221 [116]	2,060	12.2	2.4 U	2.3 U	852
C2-Naphthalenes	ug/kg	52	12.4 B	12.5 B	10.2 B	8.6 B	14.2 B	1,040 [676]	14,700	13.5 B	2.4 U	2.3 U	4,540
C2-Phenanthrenes/Anthracenes	ug/kg	79	19	19	19.7	45.5	22.8	378 [617]	3,340	29.9	24	2.3 U	1,310
C3-Benzo(a)anthracenes/Chrysenes	ug/kg	180	13.9	2.6 U	2.2 U	16.3	14.1	83.4 [634]	399	11.3	2.4 U	2.3 U	248
C3-Fluorenes	ug/kg	11 U	2.5 U	2.6 U	2.2 U	4.8 J	3 U	133 [125]	1,300	12.5	2.4 U	2.3 U	218
C3-Naphthalenes	ug/kg	40.8	8.5	8.7	8.6	9.9	10.3	754 [379]	8,760	16.5	7.6	2.3 U	1,030
C3-Phenanthrenes/Anthracenes	ug/kg	30.2	6.9	8.6	9.7	16.1	10.7	178 [474]	1,560	17.5	10.6	2.3 U	288
C4-Benzo(a)anthracenes/Chrysenes	ug/kg	126	2.5 U	2.6 U	2.2 U	2.9 U	3 U	13 U [464]	23 U	2.2 U	2.4 U	2.3 U	155
C4-Naphthalenes	ug/kg	26.4	5.2	8.9	5.4	9.6	7.7	472 [220]	5,440	19.5	5.7	2.3 U	231
C4-Phenanthrenes/Anthracenes	ug/kg	11 U	2.5 U	4.6 J	3.7 J	2.9 U	3 U	80.6 [369]	450	8.9	9.1	2.3 U	140
Chrysene	ug/kg	269	116	87.5	97.2	243	98.3	520 [1,900]	3,360	149	163	11.9	13,100
Dibenzo(a,h)anthracene	ug/kg	62.2	21.6	14.9	19.8	43.5	19.5	85 [358]	479	28.7	28.2	2.3 U	1,390
Fluoranthene	ug/kg	448	154	81.6	107	377	133	1,190 [2,090]	6,340	171	190	10.8	24,200
Fluorene	ug/kg	11 U	4.4 J	5.7	2.2 U	10.4	4.2 J	320 [301]	3,480	5.8	3.1 J	2.3 U	12,500
Indeno(1,2,3-cd)pyrene	ug/kg	185	80.4	53.2	72	125	57.3	347 [1,050]	2,010	104	99.9	6.8	5,390
Naphthalene	ug/kg	13 J	39.8	4.1 J	4.6	4.5 J	7.2	380 [723]	13,500	28.1	6.3	2.3 U	1,730
Perylene	ug/kg	86.3	31.4	20.6	25.8	52.3	21.7	155 [566]	587	47.7	41.1	4.1 J	1,820
Phenanthrene	ug/kg	158	66.1	35.6	36.2	175	58.5	1,540 [1,310]	11,000	51.8	50.4	7.6	47,100
Pyrene	ug/kg	405	167	96.7	124	313	119	1,800 [2,460]	10,400	247	204	20.9	37,100
Total NOAA 34 PAHs	ug/kg	4,420 J	1,660 J	1,070 J	1,300 J	3,030 J	1,270 J	17,200 [31,300]	157,000	2,190	1,890 J	130 J	298,000
Total Priority Pollutant (17) PAHs	ug/kg	2,960 J	1,280 J	795 J	977 J	2,340 J	943 J	10,700 [20,400]	93,800	1,620	1,480 J	108 J	245,000
General Chemistry													
Percent Solids	%	81.4	72.1	77.6	78.8	66.7	58.5	73.2 [76.6]	84.7	78	77.3	80.4	74.4
Total Organic Carbon	mg/kg	19,400	11,100	3,730	2,110	12,600	18,300	12,900 [9,850]	19,300	6,080	9,740	3,380	26,500

Notes:

B = The constituent detected in an associated blank; its presence in the sample is suspect.


J = Indicates an estimated concentration.


U = The compound was analyzed for but not detected. The associated value is the compound quantitation limit.

POWLIN 9-17 AM A

Attachment B

Boring Logs

	e Sta										Northing:766863.201 Easting: 1006894.753	W	/ell/Boring	g ID: PDI-SED-A	
	lling (ller's					-Wolf	f, Inc				Sediment Surface Elevation: 826.85	CI	lient: NYS	SEG	
	і Турє					Acke	r Ace				Borehole Depth: 30'	Lo		Court Street Binghamton, New York	
)lb Ha	mmer	Water Depth: 4.2'		S	Susquehanna River	
											Descriptions By: Will Stephens			DRAFT	
		-				-		-	i						
		ber					PID Headspace (ppm)	0							
	7	Run Number	erval	eet)	6		ace (Sample	olumr					Well/Boring	
	UOL I	Rur	e Inte	əry (f	ounts	ne*	adsp	cal S	jic Co		Stratigraphic Description			Construction	
DEPTH	ELEVATION	Sample I	Sample Interval	Recovery (feet)	Blow Counts	- Value*	DHe	Analytical	Geologic Column						
ä	Ξ	ű	05	R	B	z	٩.	Ā	G						
Ļ	-														
F															
	2 2 2 2 2 2 Brown fine to coarse subangular GRAVEL, some fine to medium Sand, loose, wet.														
Ļ															
	$\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 5 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$														
F	825 3 A Brown fine SAND, little Silt, loose, wet. 3 Gray fine SAND, some Silt, trace Organics (leaf litter), loose wet.														
-	-	2	2-4	1.4	22	46	0.0		$\hat{\mathcal{O}}$	traca	to brown fine to coarse SAND and fine to coarse suba Silt, loose, wet.	angular GR.	RAVEL,		
	-				24 22			ľ	0,0						
					12				0		n fine to medium SAND and fine to medium subangula oose, wet.	ar GRAVEL	L, trace		
- 5	-	3	4-6	0.5	41 36	77	0.0		$\mathcal{O}_{\mathcal{O}}$						
-	-				26				Õ,						
	820 -				23 11				\cdots	Brow	n fine to medium SAND, little to trace fine to medium C	Gravel, loos	ose, wet.		
-	020	4	6-8	0.7	5	16	0.0								
F	-				3 45					Brow	n fine to coarse SAND, some fine to medium subangu	lar Gravel,	, loose,	Borehole backfilled with	
_	-	_	0.40		55					wet.				portland cement and bentonite grout	
		5	8-10	0.3	38 40	93	0.0							mixture	
- 10	-				40 12					Brow	n fine SAND, trace medium Sand, loose, wet.				
-	-	6	10-12	0.9	10	17	0.0								
	815 -				8 10										
					7										
F	-	7	12-14	1.4	9 9	18	0.0								
ŀ	-				12										
	_				5 5										
- 15		8	14-16	1.2	6	11	0.0								
Ł	-				5 5										
										Rem	arks: bss = below sediment surface; NA = N NR = No Recovery	Not Applic	cable/Availa	able; AMSL = Above Mean Sea Level;	1
		1									Coordinates are based on the North A Survey Foot.			983, NEW YORK EASTERN Zone, U.S.	
	2	F		K	A	D	15				Elevations are based on the North An The coordinates and elevations were	obtained	l using Real	-Time Kinematic GPS Methods.	
	rastruc								15		Analytical samples collected from 0-0 Samples were analyzed for NOAA 34				
Proie	ect Nu	mbe	r:B∩	0130	82.00)12	Tem	plate	e:G:\r)iv11\F	Rockware\Logplot Logs\B0013082			Page: 1 of 2	
	File:F								5/2015		Created/Edited by:WDS			U	

Client: NYSI	EG							Well/Boring	ID: PDI-SED-A
Location:								Borehole De	epth: 30'
Court Stree Binghamto Susquehar	on, Ne	ew Yo River	rk						DRAFT
DEPTH ELEVATION Samula Bun Number	Sample Kun Number Sample/Int/Tvpe	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
<i>810</i> – 9	9 16-1	8 1.8	7 9 9	16	0.0				
	0 18-2	20 1.2	3 5 6 6	11	0.0			Brown fine SAND, little medium Sand, loose, wet.	
- 20 - 11	1 20-2	22 1.2	6 10 13 6	23	5.1			Brown fine SAND, little medium Sand, trace Silt, faint MGP-like odor, loose, wet.	
	2 22-2	24 2.0	6 6 7 7	13	0.0			Brown fine SAND, little to trace medium Sand, trace Silt, no odors, loose, wet.	Borehole backfilled with portland cement and
- 25 - 13	3 24-2	26 0.3	10 10 13 7	23	0.0				bentonite grout mixture
800 - 14	4 26-2	28 1.0	20 14 11 9	25	0.0		00000	Gray to gray/brown fine to medium SAND and fine to coarse subangular to subround GRAVEL, loose, wet.	
	5 28-3	30 0.8	14 14 16 14	30	0.0		00000	End of boring at 30.0' bss.	
- 30 - 795 - 								-	

Infrastructure · Water · Environment · Buildings	Remarks: bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S. Survey Foot. Elevations are based on the North American Vertical Datum of 1988. The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 0-0.5', 1.0-2.0', 2.0-3.0', and 3.0-4.0'bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method.
--	--

Drill Drill Rig	e Star ling C ler's I Type ppling	Com Nam e: Ba	pany ne: . arge-	y: Pa Joel I -mou	arratt- Rauso nted /	-Wolf cher Acke	r Ace			Northing:766863.076 Easting: 1006853.354 Sediment Surface Elevation: 825.75' Borehole Depth: 4.0' Water Depth: 8.0' Descriptions By: Will Stephens	Client: NYS Location: C	
рертн	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Well/Boring Construction
- -	_											
-	825 -	1	0-2	0.3	15 45 26 21	71	0.0	X		Gray fine to coarse subangular GRAVEL, some fine to medium wet.	Sand, loose,	Borehole
-	_	2	2-4	0.4	14 19 26 28	45	0.0	X	0000	Gray to brown fine to coarse subangular GRAVEL and fine to co trace Silt, faint MGP-like odor, loose, wet. End of boring at 4.0' bss.	earse SAND,	backfilled with bentonite pellets.
- 5	- 820 - -									Boring attepmted 2 times due to no recovery during the first atte	mpt.	
- - - 10	_											
-	815 -											
- 15 L												

Drii Drii Rig	e Stai Iling (Iler's Type npling	Com Nan e: B	pan y ne: arge	y: Pa L. Pe -mou	arratt- ch nted /	Acke	r Ace		b Har	nmer	Easting: Sediment Borehole Water De	:766848.36 1006860.4 t Surface E e Depth: 4 epth: 10.7' ions By: V	15 Elevation 0'			Well/Bori Client: N Location	YSEG	reet nton, N nanna I	ew Yorł River		FT
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratig	raphic De	scription					Well/Bo Constru		
- -	-	-								Grav		subangular to	subround G		no fino S	and wat					
-	820 -	1	0-2	0.4	78 12 6 5	18	0.0			Glay		Subangular to	Subround G	RAVEL, liac	e lille d	anu, wet.					
-	-	2	2-4	0.8	8 6 9 12	15	0.0				n fine SAND, s	some fine to co)' bss.	parse subanç	gular Gravel,	, trace S	Silt, loose, wet				Borehole backfilled bentonite	
5	- 815 -	-																			
-	-	-																			
- 10	-																				
-	810 -	-																			
-	-	-																			
- 15	- 805 -	-																			

Remarks: bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S.

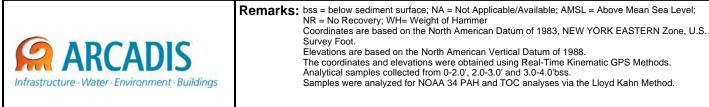
Survey Foot. Elevations are based on the North American Vertical Datum of 1988.

The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 0-2.0', and 2.0-4.0'bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method.

Dril Dril Rig	e Star ling C ler's I Type npling	Com Nan e: Bi	i pan y n e: , arge·	y: Pa Joel I -mou	arratt- Rauso nted /	Wolf cher Ackei	r Ace poon			Easting: 1006828.295 Sediment Surface Elevation: 821.45'	Well/Boring ID: PDI-SED-C Client: NYSEG Location: Court Street Binghamton, New York Susquehanna River DRAFT
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
- -	-	-			8			X		Brown to grav fine to coarse SAND and fine to coarse subangular G	SRAVEL
-	- 820 - -	1	0-2	0.8	12 19 26 25 29 34	31	0.0			Brown to gray fine to coarse SAND and fine to coarse subangular GF trace Silt, loose, wet.	Borehole allowed to naturally collapse
- 5					34 19					End of boring at 4.0' bss.	

Remarks: bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S. Survey Foot. Elevations are based on the North American Vertical Datum of 1988. The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 0-0.5', 1.0-2.0', 2.0-3.0', and 3.0-4.0'bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method. Samples collected using a 140 lb hammer.

Dril Dril Rig	e Star ling (ler's Type npling	Com Nan e: Ba	pan y ne: , arge-	y: Pa Joel I -mou	arratt- Rauso nted /	-Wolf cher Acke	r Ace			Easting: 1006811.432 Sediment Surface Elevation: 828.15'	ell/Boring ID: PDI-SED-D ient: NYSEG boation: Court Street Binghamton, New York Susquehanna River DRAFT
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	830 -										
-	-	• 1	0-2	0.9	2 1 1 1 1	2	0.0	X	000000	Gray to brown fine to coarse SAND and medium to coarse subangular GRAVEL, trace silt, faint MGP-like odor, trace iridescent sheens, loose	s, wet.
-	825 -	2	2-4	1.1	3 8 12 12	11	0.0	$\left \right\rangle$	000	Gray fine to medium SAND, trace fine Gravel , faint MGP-like odor, loo	Borehole backfilled with bentonite pellets
5	-	3	4-6	0.4	10 5 7	15	0.0	Å		End of boring at 6.0' bss.	
-	- 820 -										
- 10 -	-										
-	- 815 -										
- 15	_										



Remarks: bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S. Survey Foot. Elevations are based on the North American Vertical Datum of 1988. The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 1.0-2.0', 2.0-3.0', 3.0-4.0' and 4.0-6.0'bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method. Samples collected using a 140 lb hammer.

Dri Dri Rig	e Star Iling (Iler's I Type npling	Com Nam e: Ba	pan n e: arge	y: Pa Joel -mou	arratt- Rauso nted /	-Wolf cher Acke	r Ace			Northing:766845.173 Well/Boring ID: PC Easting: 1006783.390 Client: NYSEG Sediment Surface Elevation: 828.65' Location: Court Stra Borehole Depth: 4.0' Binghamt Water Depth: 4.5' Susqueha Descriptions By: Will Stephens Vell/Boring ID: PC	
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	- 830 -										
	- - 825 -	1	0-4	0.5	1 1 1 1 2 1 1	2 3	0.0			Gray fine to medium subround GRAVEL, trace fine Sand, very loose, wet.	Borehole allowed to naturally collapse
- 5 - -	-									Boring attempted three times due to lack of recovery on the first two attempts. Utilized a 4' split spoon in an attempt to achieve greater recovery.	
- 10 -	820 - - -										
- 15	- 815 - -										

Drii Drii Rig	e Star ling (ler's l Type npling	Com Nan e: Ba	pan y ne: arge-	y: Pa L. Pe -mou	arratt- ch nted /	Ackei	r Ace poon		lb Har	nmer	Easting Sedimer Boreho Water D	le Depth: Depth: 7.4	.477 • Elevation 4.0'		5'	Clien	t: NYS tion:C B	J ID: PD SEG court Stre inghamt usqueha	eet on, Nev anna Ri	v York ver	AF	-T
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column			Strati	igraphic D	escription						ell/Bori		
-	- 825 -	-																				
-	-	1	0-2	0.2	WH 1 2 3	3	0.0						subangular G subangular G								Borehole	
-	- 820 -	2	2-4	0.9	30 2 3 3	5	0.0	X		trace Brow	Silt, loose, w	ium SAND, tr	SAND, some f			-	avel,				backfilled with the second sec	
- 5	-	-																				
-	- 815 -	-																				
- 10 -	-	-																				
-	- 810 -																					
- 15	-																					

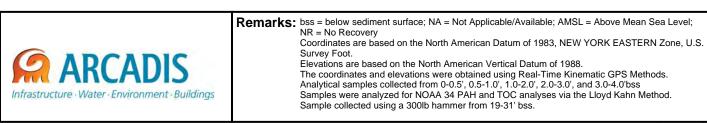
	e Sta										Northing:766830.737 Easting: 1006782.501	Well/Borin	g ID: PDI-SED-F		
	ling (ler's					-Wolf	f, Inc				Sediment Surface Elevation: 822.35'	Client: NY	SEG		
	Туре					Acke	r Ace				Borehole Depth: 30'		Court Street Binghamton, New York		
									lb Ha	mmer	Water Depth: 8.7'		Susquehanna River		
- oai		9-1010	34100								Descriptions By: Will Stephens		DRAFT		
		er					(mo								
		Run Number	/al	t)			PID Headspace (ppm)	ple	u L						
	NO	un N	Sample Interval	Recovery (feet)	nts	*	Ispac	Analytical Sample	Geologic Column		Stratigraphic Description		Well/Boring Construction		
Ξ	ELEVATION	ple R	I aldı	overy	Blow Counts	- Value*	Heac	vtical	ogic						
DEPTH	ELE	Sample I	San	Rec	Blow	/- Z	PID	Anal	Geo						
	-														
F	-														
	830 -														
	5 X A Multicolored fine to coarse subangular to subround GRAVEL, some fine to														
	5 1 0-2 12 13 0.0 V coarse Sand, loose, wet.														
F	- 1 0-2 1.2 5 8 13 0.0 Gray COBBLE in nose of split spoon.														
	- 1 0-2 1.2 8 13 0.0 Gray COBBLE in nose of split spoon. 9 Gray fine to coarse subangular GRAVEL, some fine to medium Sand, loose, wet														
	- 12 wet.														
F	- 2 2-4 1.5 12 Lense of tan Silty SAND, some fine to medium Gravel, moist. Gray fine to coarse SAND and fine to coarse subangular GRAVEL, loose,														
	825 -				17			Å	<i>D</i>	∖ satur	ated. lish brown fine to medium SAND and fine to coarse suban	gular to			
	025 -									subro	bund GRAVEL, loose, wet.	/			
-5	-	3	4-6	NR	NA	NA	NA			Rolle	r bit past due to gravel stuck between bit and 4" casing				
F	_									No D					
					9 6					NO R	ecovery.				
	-	4	6-8	NR	6	12	NA								
F	-				5 8					Multio	colored fine to coarse subround GRAVEL, some to little fir	ne Sand, loose,	Borehole backfilled with		
_					8					wet.		,	portland cement and		
	820 -	5	8-10	0.8	12	20	0.0						bentonite grout mixture		
- 10	-				14 15			-	<u>0</u>		Gray fine to medium SAND, trace fine to medium subang e, wet.	ular Gravel,			
Ļ		6	10-12	10	10	20	0.0				colored fine to coarse subround GRAVEL, some to little fir oose, wet.	e Sand, trace			
	_		10-12	1.0	10 11	20	0.0								
F	-				13										
-	_	7	12-14	0.7	10	19	0.0								
					9 10										
ſ	815 -				14			1		[e of brown fine SAND, trace fine Gravel, wet.				
- 15	_	8	14-16	1.0	10	19	0.0				fine to medium SAND, some fine to coarse subangular G e, wet.	ravel, trace Silt,			
					9 12					1					
	-	1			12						ecovery. arks: bss = below sediment surface; NA = Not		able: AMSL = Above Mean Sea Level:		
										1/6111	NR = No Recovery		1983, NEW YORK EASTERN Zone, U.S.		
(6	1		C	.ν	D	IC				Survey Foot. Elevations are based on the North Ameri				
	2										The coordinates and elevations were obt Analytical samples collected from 0-0.5'	ained using Rea , 1.0-2.0', 2.0-3.0	I-Time Kinematic GPS Methods. /, and 3.0-4.0'bss.		
Infr	astruc	ture	Wa	ter · E	nviroi	nmen	it · Bui	Iding	S		Samples were analyzed for NOAA 34 PA	H and TOC ana	lyses via the Lloyd Kahn Method.		
Proje)12					Rockware\Logplot Logs\B0013082		Page: 1 of 2		
Data	File:F	PDI-	SED	-F.da	t		Dat	e:5/6	6/2015	5	Created/Edited by:WDS				

Client: N	YSE	G								D: PDI-SED-F
Location: Court S Binghar Susque	tree ntor	n, Nev	w Yor ver	k					Borehole Dep	DRAFT
DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
	9	16-18	NR	12 11 12	23	NA			Gray fine to medium SAND, some fine to coarse subangular Gravel, trace Silt,	\neg
- 810 -	- 10	18-20	1.1	12 10 9 8	19	0.0		0000	loose, wet. Gray to brown fine to coarse SAND and fine to coarse subangular GRAVEL, trace Silt, loose, wet.	
- 20 -	- 11	20-22	0.3	7 6 5 5	11	0.0			Multicolored medium to coarse GRAVEL, trace fine Sand, loose, wet.	
	12	22-24	0.2	10 7 6 7	13	0.0				Borehole backfilled with portland cement and
- 805 - - 25 -	- 13	24-26	1.0	5 5 6 5	11	0.0			Multicolored fine to coarse subangular to subround GRAVEL, little fine to coarse Sand, loose, wet.	bentonite grout mixture
	- 14	26-28	0.5	12 9 9 12	18	0.0			Gray fine to medium SAND, trace fine Gravel, trace iridescent sheens, faint	
 - 800 -	- 15	28-30	1.7	12 10 11 10	21	196			MGP-like odor, wet. Gray fine to medium SAND and fine to medium subangular GRAVEL, MGP-like odor, irridescent sheen, light brown NAPL coating with trace blebs, wet. Gray medium to coarse GRAVEL, some fine to medium Sand, moderate black to brown NAPL coating, strong MGP-like odor, wet.	
- 30 									Brown Silty CLAY, little medium to coarse Gravel, little fine Sand, Till-like, low plasticity, moist. NAPL coating edge of Gravels for from 29.3 to 29.5' bss, with no impacts observed below 29.5' bss. End of boring at 30.0' bss.	

Infrastructure - Water - Environment - Buildings	Remarks: bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S. Survey Foot. Elevations are based on the North American Vertical Datum of 1988. The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 0-0.5', 1.0-2.0', 2.0-3.0', and 3.0-4.0'bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method.

 Project Number:B0013082.0012
 Template:G:\Div11\Rockware\Logplot Logs\B0013082

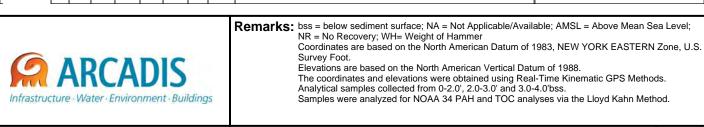
 Data File:PDI-SED-F.dat
 Date:5/6/2015
 Created/Edited by:WDS

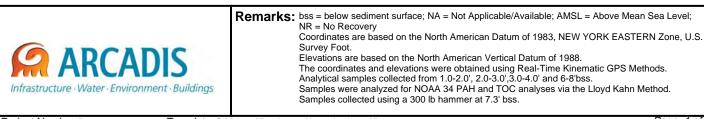

Drill Drill Rig	ling (ler's Type	Com Nam e: Ba	pan y ne: . arge-	y: Pa Joel I -mou	/23/14 arratt- Rauso nted / k 2' Sp	Wolfi cher Acker	r Ace				Northing:766 Easting: 100 Sediment Su Borehole De Water Depth Descriptions	6745.946 Irface Elevat epth: 4.0' I: 4.5'		55'	Well/Boring Client: NYS Location: C E S	SEG	eet on, New anna Rive	York er	\FT
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigraphic	: Descriptio	on				II/Boring	
-	- 830 -																		
-	-	1	0-2	0.5	2 2 4 4	6	0.0	X			ine to coarse GRA							Boreł	nole
-	- 825 -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									nedium to coarse to format the format t he format the format t he format the format the format the format the format t he format the format the format the format the format t he format t he format the format t he	SAND and fine to						allowe natura collap	ed to ally
- 5	-									Borin	attempted twice o	due to lack of rec	overy on the fi	irst attemp	t.				
- 10	820 -																		
-	815 -																		
- 15 -	_										arks: bss = be								

NR = No Recovery Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S. Survey Foot. Elevations are based on the North American Vertical Datum of 1988. The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 0-0.5', 1.0-2.0', 2.0-3.0', and 3.0-4.0'bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method. Samples collected using a 300 lb hammer.

Dri Dri Rig	e Stai Iling (Iler's Type npling	Com Nan e: B	i pan y n e: , arge-	y: Pa Joel I -mou	Rausonted <i>J</i>	-Wolf cher Acke	f, Inc. r Ace			Northing:766742.183 Easting: 1006510.461Well/Boring ID: PDI-SED-HSediment Surface Elevation: 830.45'Client: NYSEGBorehole Depth: 30'Location: Court Street Binghamton, New York Susquehanna RiverDescriptions By: Will StephensDRAFT
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column	Well/Boring Stratigraphic Description Construction
- - - 0		-			9			X		Gray to brown fine SAND, some to little fine to medium subround Gravel, little Organics (leaves, wood), wet.
-	_	1	0-2	0.6	9 19 25	28	0.0			Gray fine SAND, some Silt, loose, wet.
- 5	- - 825 -	2	2-7	2.1	35 31 20 20 54 20 15 17 17	51	0.0	X		Gray fine SAND, some Silt, trace Organics (leaves), loose, wet. Light gray to orange mottled Silty CLAY, little fine to medium Gravel, trace Organics, trace Sand, nonplastic, moist to wet. Gray medium to coarse subangular GRAVEL, some fine Sand, little lenses of Silt, loose, wet.
-	-	3	7-9	0.8	41 22 21	43	0.0			Gray fine to coarse subangular GRAVEL, little fine to medium Sand, loose, wet.
	- 820 -	4	9-11	NR	15 11 11 10 10	21	NA	-		No Recovery.
-	-	5	11-13	0.6	17 9 10 12	19	0.0			Gray fine to coarse subangular GRAVEL, trace fine to coarse Sand, loose, wet.
-	-	6	13-15	0.9	19 18 15 30	33	0.0			Multicolored (red, brown, and gray) subangular to subround medium to coarse GRAVEL, trace fine Sand, loose, wet.
- 15	815 —		15-17 15-17		40 40 34	74 74	0.0 0.0			Borehole backfilled with Bentonite chips
Inf	Castruc ect Nu	cture	Wa	ter · E	nviroi	nmen				Remarks: bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S. Survey Foot. Elevations are based on the North American Vertical Datum of 1988. The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 0-0.5', 0.5-1.0', 1.0-2.0', 2.0-3.0', and 3.0-4.0'bss Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method. Sample collected using a 300lb hammer from 19-31' bss.

Client: NYSI	EG								Well/Boring II	D: PDI-SED-H
Location:									Borehole Dep	oth: 30'
Court Stree Binghamto Susquehar	on, N	lew Riv	Yorl er	k						DRAFT
DEPTH ELEVATION Samula Bun Number	Sample Kun Number	Sample/Int/ I ype	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
	_			23			-			
8	3 17.	-19	0.9	47 38 36 33	74	0.0				
-				32 15					Gray fine SAND, little Silt, trace fine subangular Gravel, moderately dense, wet.	
- 20 810 - 9	9 19	-21	1.3	12	27	0.0			Dark gray medium SAND, trace fine subangular Gravel, loose, wet.	
				10				•*•*•	Roller bit to 22.0' bgs	
				13 15					Dark gray fine to medium SAND, loose, wet.	
	0 22	-24	1.7	14 12	29	0.0				
- 25 11	1 24	-26	2.0	13 14	31	0.0			Dark gray fine to medium SAND, trace fine Gravel, faint MGP-like odor, wet.	
805 -	. 2-	20	2.0	17 16		0.0	-			
_				5 5					Dark gray fine to medium SAND, trace Silt, faint MGP-like odor, loose, wet.	
	2 26	-28	1.4	7 12	12	0.0				
				8					Dark gray fine to medium SAND, little fien to medium subround Gravel, trace Silt, loose, wet.	
- 18	3 28	-30	1.8	8 12	20	0.0				
- 30				19					End of boring at 30.0' bss.	
-										
-										
- 25										


Dril Dril Rig	e Star ling C ler's I Type npling	Com Nam e: Bi	pan y ne: , arge-	y: Pa Joel I -mou	arratt- Rauso nted /	-Wolf cher Acke	r Ace			Easting: 1006496.644Client: NYSediment Surface Elevation: 826.05'Client: NYBorehole Depth: 4.0'Location:	ng ID: PDI-SED-I SEG Court Street Binghamton, New York Susquehanna River DRAFT
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
- - - 0	-				20			X		Gray to brown fine to medium SAND, some fine to medium subangular Gravel, trace Organics (leaves), faint MGP-like odor, loose, wet.	
_	825 —	1	0-2	0.4	46 21 8	67	0.0	X			Borehole
-	-	2	2-4	1.1	5 11 8 7	19	0.0	X	500	Gray-blue mottled Silty CLAY, trace fine to medium subround Gravel, stiff, nonplastic, moist. Gray Sandy SILT, little fine to medium subround Gravel, stiff, moist. Gray fine to medium SAND and fine to medium subangular GRAVEL, loose, faint MGP-like odor, wet.	bacefuled with backfilled with bentonite chips
5	- 820 -									End of boring at 4.0' bss.	
	-	-									
-	_	-									
- 10	- 815 -	-									
-	-										
- 15	_										


Remarks: bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S. Survey Foot. Elevations are based on the North American Vertical Datum of 1988. The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 0-0.5', 1.0-2.0', 2.0-3.0', and 3.0-4.0'bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method.

Samples collected using a 300 lb hammer.

Dril Dril Rig	e Star ling C ler's I Type npling	Com Narr e: Ba	pany ne: 1 arge-	y: Pa L. Pe -mou	arratt- ch nted /	Ackei	r Ace		lb Har	nmer	Eas Sed Bo Wa	thing:766 sting: 1000 liment Su rehole De ter Depth scriptions	6491.175 rface Ele epth: 4.0 :: 6.6'	evation:			Well/B Client: Locati	NYS on:Co Bi	eet ton, Ne anna F	ew Yorl River	° R A	FT	
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column				Stratigrap	ohic Des	scription					Vell/Bc Constru	-		
- -	- 825 -																						
	-	1	0-2	0.4	3 4 4 4	8	0.0			Gray f loose,	fine to , wet.	coarse suba	ngular GRA	VEL, little f	fine to medi	ium Sar	nd, trace Si	ilt,			Borehole		
-	_	2	2-4	1.2	7 5 2 2	7	0.0	X	0000	-		coarse SANI		o coarse su	ubangular G	GRAVEL	_, loose, we	et.			backfilled		
	820 -																						
- 10	- 815 - -																						
- 15	- 810 -																						

Drii Drii Rig	e Stai lling (ller's Type npling	Com Nam e: Ba	pan y ne:	y: Pa Joel I -mou	arratt- Rauso nted /	-Wolf cher Acke	r Ace			Northing:766682.572 Easting: 1006462.011 Sediment Surface Elevation: 827.75' Borehole Depth: 4.0' Water Depth: 3.3' Descriptions By: Will Stephens	Client: NYS Location:C B	
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		Well/Boring Construction
-	830 -											
-	-	1	0-2	0.7	12 20 19 11 6	67	155.7	X		Gray coarse subangular GRAVEL, little fine to medium Sand, ligh coating with NAPL blebs (0.01" diameter), MGP-like odor, sheens Gray-blue SILT, trace subround Gravel, trace Clay, stiff, moist.	nt brown NAPL s, loose, wet.	
-	825 -	2	2-4	0.9	7 10 8 12	19	1.8	$\left \right\rangle$		Gray fine to medium SAND, some fine to coarse subangular Grav faint MGP-like odor, loose, wet. No Recovery.	vel, trace Silt,	Borehole with backfilled with
— 5 -	-	3	4-6	NR	7 9 15 14		NA	V		Gray fine to coarse subangular GRAVEL, little fine to medium Sa like odor, no visual impacts, loose, wet.	Ind, faint MGP-	bentonite chips
-	- 820 -	4	6-8	0.9 5	44 0/.3-10/ 8	.2	0.0	Å		Begin using 300 lb hammer at 7.3' bss. End of boring at 8.0' bss.		
- 10	-											
-	- 815 -											
- 15												

Dri Dri Rig	e Star Iling (Iler's I Type npling	Com Nan e: B	pan y ne: arge-	y: Pa Bill R -mou	arratt- lice nted /	-Wolf Acke	r Ace poon		lb Han	nmer	Northing:766666.288 Easting: 1006440.644 Sediment Surface Elevation: 828.45' Borehole Depth: 8.0' Water Depth: 2.6' Descriptions By: Will Stephens	Client: NYS Location: C	
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description		Well/Boring Construction
-	- 830 -	-											
-	-	1	0-2	1.3	21 30 15 16	45	43.3	X		Gray Grave staini	y SILT, little Organics (leaves), trace fine Sand, trace Clay, s y to dark gray fine to medium SAND, some fine to medium s vel, MGP-like odor, trace iridescent sheens, trace NAPL ble ning, loose, wet. y Silty SAND, some fine to medium subangular Gravel, trace	ubangular os, black	
-	- 825 -	2	2-4	0.9	8 12 10 10	22	19.3	X		(wood Gray Brow	od), wet. y medium to coarse subangular GRAVEL, little fine Sand, tra wn fine to medium subangular GRAVEL, some fine to coarse PL blebs, iridescent sheens, MGP-like odor, wet.	ace Silt, wet.	
-5	-	3	4-6	0.5	18 31 23 30	54	2.7						Borehole backfilled with bentonite chips
-	-	4	6-8	NR	9 8 8 10	16	NA			No R	Recovery.		
-	820 -	5	8-10	0.4	26 23 24 31	47	0.0			obvio	wn coarse subangular GRAVEL, trace fine Sand, trace Silt, l ious impacts wet. I of boring at 10.0' bss.	oose, no	
-	- - 815 -												
- 15	-	-											

Remarks: bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery

Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S. Survey Foot.

Elevations are based on the North American Vertical Datum of 1988.

The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 1.0-2.0', 2.0-3.0', 3.0-4.0', 4.0-6.0' and 8.0-10.0' bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method.

Dril Dril Rig	e Star ling C ler's I Type npling	Com Nam e: Ba	pan y ne: , arge-	y: Pa Joel I -mou	arratt- Rauso nted /	Wolf cher Ackei	r Ace			Easting: 1006454.929Client: NYSediment Surface Elevation: 822.45'Client: NYBorehole Depth: 6.0'Location: (g ID: PDI-SED-L SEG Court Street Binghamton, New York Susquehanna River DRAFT
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	825 -										
-		1	0-2	0.7	22 36 46 25	72	4.7	X		Gray fine to coarse SAND, some fine to coarse subangular Gravel, trace Silt, loose, wet. Black medium to coarse SAND (stained), little fine subangular Gravel, trace sheens, black staining, loose, wet.	
-	820 -	2	2-4	0.7	22 13 16 25	29	0.0	X		wet. Gray medium to coarse GRAVEL, little fine Sand, trace Silt, faint MGP-like odor, trace iridescent sheen, loose, moist. Begin using 300 lb hammer at 4.0' bss.	Borehole backfilled with bentonite chips
-5	_	3	4-6	0.6	14 7 3 2	10	0.0	$\left \right\rangle$	0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<0<	Light brown to tan fine to coarse subangular GRAVEL, little fine Sand, trace Silt, loose, wet. End of boring at 6.0' bss.	
-	- 815 -										
- 10	_										
-	_										
-	810 -										
- 15	-										

Remarks: bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S. Survey Foot.

Elevations are based on the North American Vertical Datum of 1988.

The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 0-0.5', 0.5-1.0', 1.0-2.0', 2.0-3.0', 3.0-4.0', and 4.0-6.0'bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method. Samples collected using a 300 lb hammer beginning at 4.0' bss.

rilling riller' ig Ty	g Co s Na pe:	mpar ime: Barge	iy: P Bill R e-mou	arratt- lice	-Wolf Ackei	r Ace		b Har	nmer	Borehole Dep Water Depth:	pth: 8.0' 10.0'		Client: NYS Location: C	SEG Court Street Binghamton, N Busquehanna	lew York
	ELE VALION Samolo Dun Numbor	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column		S	Stratigraphic De	escription			Well/Boring Construction
	-			45				O:v	Brow	n fine to coarse SAN	D and fine to coars	e subangular GRA	/EL loose wet		
	1	0-2	0.7	11 20 17	31	0.0		0000	BIOW				7LL, 10056, wel.		
	- 2	2-4	0.8	14 16 19 16	35	0.0			thick) wet.	of brown to black lig	SAND, some Silt, b ht NAPL coating, N	black staining, thin lo IGP-like odor, trace	ense (<0.01' sheens, loose,	-	Borehole backfilled with bentonite chips
-:	5 - 3	4-6	1.2	17 9 14 16	23	0.0			Gray	fine SAND, some fin	e to medium Grave wet.	el, trace Silt, faint M	GP-like odor,		
	-		0.6	22 19 23 14	42	0.0			End	of boring at 8.0' bss.					
0 -10	-														
	_														
	-														
5 -15	5 -														
	vrilling rriller' ig Ty ampli	NOLLEY A	rilling Compar- riller's Name: ig Type: Barge ampling Method 	rilling Company: P riller's Name: Bill R ig Type: Barge-mou ampling Method: 3":	rrilling Company: Parratter riller's Name: Bill Rice ig Type: Barge-mounted ampling Method: 3" x 2' S	riller's Name: Bill Rice ig Type: Barge-mounted Acker ampling Method: 3" x 2' Split S NOLLY 3 NOLLY 3 N	rrilling Company: Parratt-Wolff, Inc. rriller's Name: Bill Rice ig Type: Barge-mounted Acker Ace ampling Method: 3" x 2' Split Spoon NOLY and the second secon	Initiality Company: Parratt-Wolff, Inc. riller's Name: Bill Rice ig Type: Barge-mounted Acker Ace ampling Method: 3" x 2' Split Spoon, 3001 Initial application of the split spoon of the split split spoon of the split spoon of the split spoon of the	rilling Company: Parrat-Wolff, Inc. riller's Name: Bill Rice ig Type: Barge-mounted Acker Ace ampling Method: 3" x 2' Split Spoon, 300lb Har $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	rilling Company: Parratt-Wolff, Inc. riller's Name: Bill Rice ig Type: Barge-mounted Acker Ace ampling Method: 3" x 2' Split Spoon, 300lb Hammer NOIL IN 19 adults 3" x 2' Split Spoon, 300lb Hammer NOIL IN 19 adults 3" x 2' Split Spoon, 300lb Hammer NOIL IN 19 adults 3" x 2' Split Spoon, 300lb Hammer NOIL IN 19 adults 3" x 2' Split Spoon, 300lb Hammer NOIL IN 19 adults 3" x 2' Split Spoon, 300lb Hammer NOIL IN 19 adults 3" x 2' Split Spoon, 300lb Hammer NOIL IN 19 adults 3" x 2' Split Spoon, 300lb Hammer NOIL IN 19 adults 3" x 2' Split Spoon, 300lb Hammer NOIL IN 19 adults 3" x 2' Split Spoon, 300lb Hammer NOIL IN 19 adults 3" x 2' Split Spoon, 300lb Hammer NOIL IN 19 adults 3" x 2' Split Spoon, 300lb Hammer NOIL IN 19 adults 3" x 2' Split Spoon, 300lb Hammer NOIL IN 19 adults 3" x 2' Split Spoon, 300lb Hammer	rilling Company: Parratt-Wolff, Inc. riller's Name: Bill Rice ig Type: Barge-mounted Acker Ace ampling Method:3" x 2' Split Spoon,300lb Hammer NOLEX UNITY and the second se	rilling Company: Parratt-Wolff, Inc. riller's Name: Bill Rice ig Type: Barge-mounted Acker Ace ampling Method: 3" x 2" Split Spoon, 300lb Hammer NOLLYASH ig Type: Barge-mounted Acker Ace ampling Method: 3" x 2" Split Spoon, 300lb Hammer NOLLYASH ig Type: Barge-mounted Acker Ace ampling Method: 3" x 2" Split Spoon, 300lb Hammer NOLLYASH ig Type: Barge-mounted Acker Ace ampling Method: 3" x 2" Split Spoon, 300lb Hammer NOLLYASH ig Type: Barge-mounted Acker Ace ampling Method: 3" x 2" Split Spoon, 300lb Hammer NOLLYASH ig Type: Barge-mounted Acker Ace ampling Method: 3" x 2" Split Spoon, 300lb Hammer NOLLYASH ig Type: Barge-mounted Acker Ace ampling Method: 3" x 2" Split Spoon, 300lb Hammer NOLLYASH ig Type: Barge-mounted Acker Ace ampling Method: 3" x 2" Split Spoon, 300lb Hammer NOLLYASH ig Type: Barge-mounted Acker Ace ampling Method: 3" x 2" Split Spoon, 300lb Hammer NOLLYASH ig Type: Barge-mounted Acker Ace ampling Method: 3" x 2" Split Spoon, 300lb Hammer NOLLYASH ig Type: Barge-mounted Acker Ace ampling Method: 3" x 2" Split Spoon, 300lb Hammer NOLLYASH ig Type: Barge-mounted Acker Ace	rilling Company: Parratt-Wolff, Inc. riller's Name: Bill Rice ig Type: Barge-mounted Acker Ace ampling Method: 3" x 2" Split Spoon, 300b Hammer	rilling Company: Parratt-Wolff, Inc. rilling Company: Parratt-Wolff, Inc. rilling Yop: Barge-mounted Acker Ace ampling Method: 3' x 2' Split Spoon, 300lb Hammer	ritling Company: Parrat-Wolf, Inc. ritler's Name: Bill Rice ampling Method: 3" x 2" Split Spoon, 300lb Hammer Provide Parrat-Wolf, Inc. ritler's Name: Bill Rice ampling Method: 3" x 2" Split Spoon, 300lb Hammer Provide Parrat-Wolf, Inc. maphamion, N Berown The Depth: 10.0" Descriptions By: Will Stephens Provide Parrat-Wolf, Inc. Provide Parrat-Wolf, Inc. Pro

bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery Remarks:

Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S. Elevations are based on the North American Vertical Datum of 1988.

The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 0-2.0', 2.0-4.0', 4.0-5.0', 5.0-6.0' and 6.0-8.0' bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method.

Dril Dril Rig	ler's Type	Com Nam e: Ba	pan y ne: arge·	y: Pa L. Pe •mou	arratt- ch nted /	Acke	r Ace		lb Har	nmer	Eastir Sedim Boreł Water	ing:NA ng: NA ent Sur nole Dep Depth: iptions	pth: 6.0	0'			С	ient: N`	/SEG Court S	Street mton, N ehanna			F٦	Γ
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column			S	Stratigra	aphic D	escripti	on					Well/Bo Constru	-		
- -	- - -				8				00	Brow	n fine to co	oarse SAN	ID and find	e to coars	se subanç	gular GRA	VEL, la	pose, wet.						
-	-	2	0-2	0.7	8 17 12 8 11 10 10	31	0.0		0000	thick) wet.	gray fine t of brown	o medium to black lig	SAND, so	ome Silt, t coating, N	black stai MGP-like	ning, thin le odor, trace	lense (e sheel	<0.01' ns, loose,		_		 Borehole backfille bentonite 	d with	
- 5	-5 -	3	4-6	0.5	36 26 20 25	23	0.0	X		Gray no vi	fine SANE	D, some fin tts, loose, v	ne to medi wet.	ium Grave	el, trace S	iilt, faint M	GP-lik	e odor,						-
- - 10	-10 -																							
-	-																							
- 15	-15 -																							

Remarks: bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery

Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S. Survey Foot.

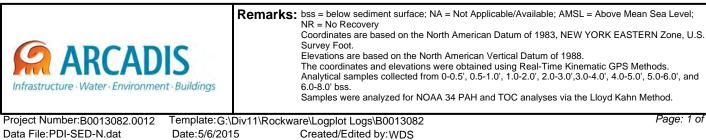
Elevations are based on the North American Vertical Datum of 1988.

The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 0-2.0', 2.0-4.0', 4.0-5.0', 5.0-6.0' and 6.0-8.0' bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method.

Dril Dril Rig	ler's Type	Com Nam e: B:	i pan y ne: I arge-	y: Pa L. Pe -mou	arratt- ch nted /	Acke	r Ace		lb Han	Easting: 1006458.844ClieSediment Surface Elevation: 820.15'LocBorehole Depth: 4.0'Loc	ell/Boring ID: PDI-SED-L-3 ent: NYSEG cation: Court Street Binghamton, New York Susquehanna River DRAFT
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	_										
-	820 -	1	0-2	NR	6 9 4	13	NA			No Recovery, Cobble stuck in nose of split spoon.	
-	-	2	2-4	0.6	4 6 2 2 1	4	0.0	X		Multicolored fine to coarse subangular GRAVEL, little fine to medium Sa loose, no obvious impacts, wet. End of boring at 4.0' bss.	and, Borehole backfilled with bentonite chips
- 5	- 815	-									
-	-	-									
- 10	- 810 -										
-	-										
- 15	- 805 -										

Remarks: bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S. Survey Foot.

Elevations are based on the North American Vertical Datum of 1988.


The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 2.0-4.0'bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method.

Dril Dril Rig	e Star ling (ler's Type npling	Com Nan e: B	i pan y n e: I arge-	y: Pa Bill R -mou	arratt lice	-Wolf Acke	r Ace)Ib Ha	Morthing:766632.108 Easting: 1006406.850 Sediment Surface Elevation: 829.15' Borehole Depth: 20' Water Depth: 1.9' Descriptions By: Will Stephens Well/Boring ID: PDI-SED-M Client: NYSEG Location: Court Street Binghamton, New York Susquehanna River	Dlb Hammo	FT
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column	Well/Boring Stratigraphic Description Construction	Geologic Column	
-	830 -	-							D.::		0	
-	-	1	0-2	0.9	57 23 36 23	59	0.0		0000	Gray fine to coarse GRAVEL, some fine to coarse Sand, trace Silt, dense, wet.	0000	
-	- 825 -	2	2-4	0.4	22 20 15 7	35	0.0		0000			
-5	-	3	4-6	0.9	5 5 6 5	11	0.0			Gray medium SAND, some to little fine to medium subangular Gravel, loose, wet.	we	
-	-	4	6-8	0.4	7 6 8 8	14	0.0	-		Brown fine to medium SAND and fine to coarse subangular GRAVEL, trace Silt, loose, wet.		
- 10	820 -	5	8-10	0.8	5 6 6 8	12	0.0		0000	Gray fine to coarse SAND and fine to coarse subangular GRAVEL, trace Silt, loose, wet. backfilled with portland cement and bentonite grout mixture		and
_	-	6	10-12	0.9	23 30 15 15	45	0.0		00000	trace Silt, stiff, wet. Gray fine to coarse SAND and fine to coarse subangular GRAVEL, loose, wet.		
-	-	7	12-14	0.8	9 6 7 9	13	0.0		0000		0000	
- 15	815 -	- 8	14-16	NR	18 15 14 15	29	NA		,	No Recovery.		
Infr Proje		mbe	e Wa	ter · E	82.00	nmen	t · Bui	iding	25 9:G:\D	Brown fine to coarse subangular GRAVEL, some to little fine to medium Sand, Remarks: bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S. Survey Foot. Elevations are based on the North American Vertical Datum of 1988. The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 2.0-3.0', 3.0-4.0', and 4.0-5.0'bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method. Sample collected using a 140lb hammer from 0-0.5' bss. Div11\Rockware\Logplot Logs\B0013082 Page: 1 o Created/Edited by: WDS	Rei	e, U.S.

Clier	nt: NY	/SE	G							Well/Boring ID: PDI-SED-M									
Bin	t ion: urt St ighan squel	reet	, Nev	w Yor ver	'k					Borehole Dept		RAFT							
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description		II/Boring Istruction							
-	-	9	16-18	0.7	13 13 14	26	0.0			trace Silt, loose, wet.		Borehole							
	- 810 -	10	18-20	1.5	13 13 16 20	29	0.0			Gray fine to medium SAND, little fine to medium subangular Gravel , trace Silt, loose, wet. Multicolored fine to medium subangular GRAVEL, little fine Sand, trace Silt, loose, wet.		borenoie backfilled with portland cement and bentonite grout mixture							
- 20	-									End of boring at 20.0' bss.									
-	- 805 -																		
- 25 - -	-																		
- 30	- 800 -																		
-	-																		
-	- 795 -																		

Infrastructure · Water · Environment · Buildings	Remarks: bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S. Survey Foot. Elevations are based on the North American Vertical Datum of 1988. The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 2.0-3.0', 3.0-4.0', and 4.0-5.0'bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method. Sample collected using a 140lb hammer from 0-0.5' bss.
--	--

Dril Dril Rig	e Star ling (ler's l Type npling	Com Nam e: Ba	pan y ne: . arge-	y: Pa Joel I -mou	arratt- Rauso nted /	Wolf cher Ackei	f, Inc. r Ace		b Har	nmer	Northing:766616.465 Easting: 1006414.322 Sediment Surface Elevation: 824.65' Borehole Depth: 8.0' Water Depth: 6.4' Descriptions By: Will Stephens	ng ID: PDI-SED-N 'SEG Court Street Binghamton, New York Susquehanna River DRAFT					
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description		Well/Boring Construction				
- -	- 825 -								3 2 2								
-	-	1	0-2	0.8	36 25 49 50	74	4.1	X	0000		/ coarse GRAVEL, trace fine Sand, black NAPL blebs (< P-like odor, loose, wet. / fine to coarse SAND and fine to coarse subangular GR s (<0.01" diameter, abundant), MGP-like odor, trace iride						
-	-	2	2-4	1.1	22 10 8 11	18	3.2	X		Brow	se of tan medium SAND. vn fine to coarse GRAVEL and fine to coarse SAND, loo d 300 lb hammer from 2.0- 4.0' bss.	se, wet.					
5	820 -	3	4-6	0.6	28 21 15	36	0.0			Multio some	icolored (Gray, red, and brown) fine subangular to subro e to little fine Sand, trace medium Gravel, trace Fill (stee s (<0.01" diameter), faint MGP-like odor, loose, wet.	und GRAVEL, I bolt), trace NAPL	Borehole backfilled with bentonite chips				
-	-	4	6-8	0.8	19 17 17 16 19	33	0.0			loose	vn to gray fine to medium SAND, little fine subangular G e, wet. of boring at 8.0' bss.	ravel, trace Silt,					
	- 815 -	-															
-	-	-															
- 	- 810 -																

Dril Dril Rig	e Star ling (ler's Type npling	pan y ne: arge·	y: Pa Bill R -mou	arratt- lice nted /	Wolf	r Ace		b Har	nmer	Ei Se B W	Easting: 1006412.756Client: NY3Sediment Surface Elevation: 824.65'Client: NY3Borehole Depth: 4.0'Location: 0								g ID: PDI-SED-N-1 SEG Court Street Binghamton, New York Susquehanna River DRAFT											
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description												Well/Boring Construction							
- -	- 825 -																													
-	-	1	0-2	0.6	15 18 23 18	41	0.0			Gray	fine	e to coa	rse sub	angular	r GRAV	EL, little	fine to i	mediur	n Sano	d, loose	, wet.			L		prehole				
-	-	2	2-4	0.7	12 9 9 18	18	0.0			End	of bo	oring at	: 4.0' bs:	S.												ackfilled wi				
- 5	820 - -																													
- - - 10	- 815 -																													
-	-																													
- 15	- 810 -																													

Remarks: bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S. Survey Foot.

Elevations are based on the North American Vertical Datum of 1988.

The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 0-2.0', and 2.0-4.0'bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method.

Template:G:\Div11\Rockware\Logplot Logs\B0013082 Project Number:B0013082.0012 Data File:PDI-SED-N-1.dat Date:5/6/2015 Created/Edited by:WDS

Dril Dril Rig	e Star ling (ler's Type npling	Com Nam e: Ba	pan y ne: arge-	y: Pa Bill R -mou	arratt- ice nted /	-Wolf	r Ace		lb Han	nmer	Northing:760 Easting: 100 Sediment Su Borehole De Water Depth Descriptions	06386.385 Irface Elevat epth: 4.0' h: 3.5'	ng ID: PDI-SED-O ISEG Court Street Binghamton, New York Susquehanna River DRAFT							
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column			Stratigraphic	Well/Boring Construction							
-	830 - -																			
-	-	1	0-2	1.0	42 100 38 28	138	0.0			Dark		n SAND, some to	to coarse subangular (s), loose, wet. little fine to coarse sub							
-	825 -	2	2-4	1.8	38 27 30 39	57	0.0	X	0000	Silt, t Gray	ace red Brick, den	se, wet.	o coarse subangular G fine to coarse subangu			_	 Borehole backfilled with bentonite chips 			
5	-	3	4-6	0.9	40 25 27	52	0.0	X		loose			nd, trace Silt,							
- 10	- 820 - -				30					End	f boring at 6.0' bss	3.								
-	- 815 - -																			
											arks: bss = b	elow sediment	surface; NA = Not /	Applicable/Avail	able; AMSI	L = Above M	lean Sea Level;			

Drii Drii Rig	e Star lling (ller's Type npling	Com Nam e: Bi	pan y ne: arge-	y: Pa Bill R -mou	arratt- ice nted /	-Wolf	r Ace		lb Har	nmer	East Sedin Bord Wate	hing:76656 ing: 10063 ment Surfa ehole Dept er Depth: (criptions B	87.029 ace Eleva th: 6.0' 6.2'		ng ID: PDI-SED-P (SEG Court Street Binghamton, New York Susquehanna River DRAFT							
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column			St	ratigraph	Well/Boring Construction								
- -	- 825				28				D.::	Grav	coarse	subangular GF	RAVEL, som	ne red Brick	[Fill], trace fin	e Sand, wet.						
	-	1	0-2	0.7	28 70 38 65	108	0.0	X		Dark	gray me	edium to coarse ick staining, fai	e subangula	ar GRAVEL,								
-	-	2	2-4	1.0	71 42 22 31	64	0.0	X		Gray trace	to brown Silt, trac	o brown fine to coarse subangular GRAVEL, some fine to medium SAND, Silt, trace Fill [Glass, red Brick], trace iridescent sheen, wet. o brown fine to coarse subangular GRAVEL, some fine to medium SAND, Silt, trace Fill [Glass, red Brick], wet.								Borehole backfilled w bentonite ch		
- 5	820 -	3	4-6	0.5	22 18 25 19	43	0.0	X		trace	Silt, trad											
-	-	-																				
-	-	-																				
10 -	815 -	-																				
-	-																					
- 15	- 810																					

Remarks: bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S.

Survey Foot. Elevations are based on the North American Vertical Datum of 1988. The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 0-0.5', 0.5-1.0', 1.0-2.0', 2.0-3.0', 3.0-4.0', and 4.0-5.0' bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method. Used 300lb Hammer from 2.5-6.0' bss.

Drill Drill Rig	ling C er's I Type	Com Nam e: Ba	pan y ne: arge	y: Pa L. Pe -mou	nted /	Acke	r Ace		lb Har	nmer	Eas Sed Bo Wa	Northing: 766538.636 Easting: 1006372.263 Sediment Surface Elevation: 824.95' Borehole Depth: 4.0' Water Depth: 6.1' Descriptions By: Will Stephens								ew Yor River		F	Г	
DEPTH	ELEVATION	Sample Run Number	Sample Interval	Recovery (feet)	Blow Counts	N - Value*	PID Headspace (ppm)	Analytical Sample	Geologic Column				Stratigr	aphic D		Well/Boring Construction								
- - -	- - 825 -				10				0240	Multic		d fine to mea	dium subar	ogular GRA		fine Sand	loose we	+						
-	-	1	0-2	0.4	10 10 4 6	14	0.0			Mullic	JOIOTEC				VEL, IIIIe	ine Sanu	, 100se, we							
-	-	2	2-4	0.8	7 12 12 10	24	0.0			loose	, wet.	coarse sub	-	RAVEL and	I fine to coa	arse SAN	D, trace Sil	lt,				 Borehole backfilled bentonite 	d with	
	= 820 - - - 815 - - -											<u>y</u> u 10 00	~											
- 15	- 810 -																							

Remarks: bss = below sediment surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level; NR = No Recovery Coordinates are based on the North American Datum of 1983, NEW YORK EASTERN Zone, U.S.

Survey Foot. Elevations are based on the North American Vertical Datum of 1988.

The coordinates and elevations were obtained using Real-Time Kinematic GPS Methods. Analytical samples collected from 0-2.0', and 2.0-4.0'bss. Samples were analyzed for NOAA 34 PAH and TOC analyses via the Lloyd Kahn Method.